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A new, robust algorithm s presented for the implicit calculation of the electromagnetic
fields used in the full-particle and hybrid modeling of 2D simulation plasmas. The algorithm
allows for calculations at time steps .17 well in excess of the plasma period and for mesh scales
Ax far exceeding the Debye length—with electron inertial terms retained. The 1mplicit fields
suppress the numerical instability associated with plasma waves. Still, the Jr remain con-
strained by an electron Courant hmit. The algorithm is considerably simpler than earlier
implicit schemes, and more complete in its treatment of field errors In its present form the
algorithm is limited to plasmas moving and accelerating in a plane across a sigle component
of magnetic field. An extension to include all the field components is suggested, however. In
accordance with the implicit moment method, estimated electric and magnetuc fields are
obtained by solving Maxwell's equations self-consistently for a set of wmplicit sources,
estimated with the aid of an auxiliary set of lower fluid moment equations {for component
fluxes and density). The fluid pressure terms are treated explicitly, and the spatial differencing
of the auxiliary moments is centered to facilitate the solution of the resultant field equations
Solution for the single magnetic field component is obtained by one elliptic equation nver-
sion, readily managed by a vectorized solver package. A subsequent irrotational old E-field
correction is found to be crucial for the maintainence of anticipated quasi-neutrality. A con-
comitant rotational correction is needed for physical solutions i steep density gradien:
problems. We show that both corrections can be obtained simultaneously by referencing the
deviations between the true currents flowing, and the currents predicted to flow in the plasma
at the end of a cycle. The current correction is shown to be equivalent to the first (and usually
sufficient) step of an iterative procedure leading to an exact solution for the fields In addition,
we demonstrate that electrostatic solutions can be obtained from the implicit algorithm by
setung the speed of light to very large multiples of 1ts physical value. Compansons are mace
with earlier moment and direct method approaches, and the scheme 1s related to previous
classical hybrid models. Demonstrative applications are discussed.

1. INTRODUCTION

In particle-in-cell (PIC) plasma simulation [1,2] a large number of particles.
each representing many electrons or ions, are advanced in accordance with New-
ton’s laws through electromagnetic fields determined from Maxwell’s equations. In
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related hybrid schemes [3] a portion of the plasma electrons or ions are treated as
fluids. The older full-particle explicit plasma simulation models [4] were limited to
time steps less than a plasma period, ie., @, 4t <2. With the invention of implicit
plasma simulation schemes, this restraint was removed, first in one dimen-
sion [3, 5-15], and then in two-dimensions [ 16-207]—offering great promise for
diverse applications. Yet, to date, 2D usage [21-247 has not been widespread, due,
in part, to the complexity and sensitivity of the algorithms first proposed. This has
encouraged the development of the new algorithm detailed here, which appears to
be both simpler and more robust than the earlier approaches. The new algorithm is
embodied in the 2D implicit hybrid simulation code ANTHEM.

Presently, ANTHEM is limited to plasmas moving in a plane through, say, E,
and E| electric fields, and across a single mutually perpendicular B. component of
magnetic field. An extension of the algorithm to include all the remaining field com-
ponents is, however, discussed. We use the moment method [9, 12, 167, solving
Maxwell’s equations for time-advanced sources predicted with a set of auxiliary
fluid moment equations. With explicir pressures employed in these auxiliary
equations, the predicted currents become simple algebraic functions of the local
E-fields. In turn, through Ampere’s law these E-fields become algebraic functions of
V x B. Substitution of these E expressions into Faraday's law leads, for the plasma
flows considered, to a single elliptic equation for B.. This is readily inverted with
vectorized solver packages. Earlier approaches differ by treating either the static
and/or dynamic pressure implicitly and by working iteratively with the scalar and
vector electromagnetic potentials [16], or by using the direct implicit method,
which leads to currents dependent on spatial derivatives of the E-field com-
ponents [20]. Both prescriptions generate a much more complex set of field
equations than those encountered in ANTHEM. A current-related rule is used in
the new algorithm for the iterative correction of the fields to their exact values. The
earlier methods have relied on only ad hoc corrections to the irrotational sub-por-
tions of the FE-fields. ANTHEM allows for the hybrid fluid modeling of selected
components of the plasma. The former treatments have been confined to a PIC
representation for all the electrons and ions.

We review the general features of the implicit moment method in the next section.
Then, two modes of the ANTHEM field algorithm are spelled out in Section 3 (a
preliminary outline has been given elsewhere [25-27]), and a fuli-field extension of
the algorithm is suggested. Section 4 shows how the plasma coordinates are advan-
ced in the implicit fields derived from the new algorithm. Section 5 discusses
approximate correction of the fields. An Appendix discusses more complete iterative
corrections. In Section 6 we summarize the operations performed in a typical
ANTHEM cycle. The remaining sections provide additional background material.
In Section 7 we show that electrostatic solutions can be obtained by artificially
setting the speed of light to very large values. Section 8 compares our algorithm to
approaches taken by other workers. Next, Section 9 discusses the existing hybrid
implementation of the algorithm and speculates on future possibilities. The remain-
ing Sections provide demonstrative applications, and our conclusions.
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2. Tue ImprLICIT MOMENT METHOD

Linear analysis shows [9, 11] that simulation can avoid the numerical
instabilities related to the plasma waves, if the plasma coordinates are updated in
time-advanced electric fields. At first, it might seem that knowledge of these fields
would require the inversion of a very large matrix corresponding to the field and
plasma equations. With 100 particles/cell this could amount to some 500
equations/cell, for example, so that for a 50 x 50 mesh one wouid need to invert
more than 10° equations (which would, in turn, lead to the inversion of 108 x 10°
size matrices!). This inversion problem is, however, markedly reduced in the
moment method—simply by solving Maxwell’s equations jointly with a set of
auxiliary fluid equations (at least a set of momentum equations. possibly aiso a
continuity equation). This procedure produces an implicitly predicied set of fields
and sources to Maxwell’s equations. The particles and any true fluids are then
advanced in these predicted fields. Deviations between the predicted sources {i.c.,
currents) for Maxwell's equations, and those actually achieved are coilected. These
are used as sources through the moment equations for subsequent improvements to
the fields. prior to a an update of the plasma coordinates to improved values, giving
improved sources. This whole process can be iterated repeatedly, although a single
correction—usually delayed to the beginning of the next cycle—has been found. in
general, to suffice.

When the plasma is modeled at least partially with fluid components, these are
advanced in time by a set of “true fluid equations.” Analytically, the true fluid
equations are identical in their lower moments to the auxiliary moment equations
used for the fields. But in ANTHEM the true equations extend beyond continuity
and momentum to include an energy (or entropy} equation, and a prescription for
the heat flux. Numerically, the auxiliary lower moments, and the true fluid lower
moments differ in ANTHEM because centered spatial differencing is generally used
in the auxiliary equations, while Van Leer [ 28] spatial differencing is employed for
the true fluids. An improved spatial treatment is needed for the true hydrodynamic
advance to minimize numerical diffusion. However. it is skipped in the auxiliary
equations governing fields to simplify, and to avoid mandatory iteration. The Van
Leer differencing requires prior knowledge of the fluid velocities, which are known,
only after the field and Maxwell sources have been derived, ie., after the field
equations have been solved.

a. How Implicit?

One is, of course. free to choose a degree of implicitness that suffices for the
problems of interest—as a compromise between the utility and simplicity of the
nurerical scheme which results. When the sources to Maxwell’s equations are lefi
explicit, but the Vx B of Ampere’s law, and the V x E of Faraday’s law are made
implicit, one can use a time step Az exceeding the Courant condition based on the
speed of light, in performing electromagnetic simulations. Godfrey [ 297 showed this
some years ago. Accordingly. uncoupled elliptic {Poisson} equations must be solved
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separately for the B-field components, and the simplest option to use a leap-frog
update of the fields [30] is lost.

Beyond this, to avoid the time step limitation from plasma oscillations which
restrains calculations to w, Ar <2, onc must make the E-field implicit in the dif-
ferenced auxiliary momentum (i.e., current) equations [9, 13]. The elliptic field
equations become inhomogeneous by this addition, and a symmetric matrix
equation solver is needed for their inversion. Significant utility may be achieved for
particle schemes at this stage, since with w, Ar>1 the use of time steps
approaching the electron Courant limit, ie, 0.1 <v, At/Ax < 1.0 with w, At>1,
supresses the finite grid instability [ 16, 177]. (One reason for the development of a
fluid capability in ANTHEM is that in very cold regions, where this Courant
requirement cannot be satisfied, the use of fluid electrons can bypass this
instability.)

Next, should one desire to describe plasmas in intense magnetic fields with the
time step exceeding the electron cyclotron time, ie., w,. Ar> 1, then the velocity
must be implicit in the v x B terms of the component momentum equations which
yield the new currents. With velocity implicit wherever v x B appears. the resultant
elliptic equations are, in general, strongly coupled and nonsymmetric with stencils
exceeding 9-points. But, for the simple case of motion, acceleration and E-fields in a
plane perpendicular to a single component of B, the system can be reduced to a
single nmonsymmetric 9-point elliptic equation for, say, B.. This is the first
operational mode available with ANTHEM. Less obviously, we have found that if v
is left explicit in the elliptic equations for B, but implicit in the current update, the
resultant equations are largely decoupled with symmetric matrices, and
stable—even when . At3> 1. This second mode is available in ANTHEM, but still
under evaluation, due to its unusual structure,

Finally, for the ability to use the implicit differencing scheme at time steps
exceeding the Courant limit, i.e., Ar> Ax/a,, where a, is thermal speed of the fastest
clectrons, one must employ an implicit pressure [9, 16] or extrapolate the
moment [177] equations. Freedom from an electron Courant limit can be useful, if
variable cell sizes are desired—with very fine cells placed in inactive regions of a
problem, where accuracy may not be too crucial. However, the use of either implicit
pressure or extrapolation widely expands the stencil for the field solution
matrix—presenting a special challange for inversion. For simplicity, therefore, we
bypass extrapolation and retain explicit pressures in ANTHEM.

We now detail the field solution procedures employed.

3. THE FIELD PREDICTION

For implicit fields we require a time-advanced current source in Ampere’s law

JE
== —4n Y q,j.+cV x B, (1)
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which is solved with Faraday’s law

JB N
—7= —cVxE (<)

to obtain the new E- and B-fields. Here and subsequently, > is over the com-
ponents .

The j,=n,v, terms in Eq. (1) are component fluxes, with n, the component den-
sity and v, its velocity. The charges g, and g, are —e for, say, hot and cold electron
components in a laser-driven transport problem [3], while g,= +Ze for the ions.
The V-B=0 Maxwell Equation reduces to ¢B./dz=0, when only the single 5.
component is allowed. Finally, the accumulated charge will give rise to E-fields
obeying Gauss’s equation

V-E=dn) q,n,. ‘

Lad
o
~—

The E-field is related to the scalar electrostatic potential ¢ by the expression

E=-V§p——-—. {3b)

Here, A is the magnetic vector potential, satisfying

B=VxA {3c)

The scalar potential is used principally as a diagnostic in our new algorithm,
although it features in our Section 5 discussion of field corrections. Brackbill, For-
slund, and Wallace [ 16-18] have used the vector potentials A as an intermediary in
obtaining implicit E and B fields. We work with the ficids directly. Time integrating
Eq. {1), we obtain

EVU=E"™ 42 g, Ar+cV x BT At 4)

We store all physical properties at time level-(m). Appropriate time averages are
taken to form optimal centerings {37 at the time levels (*) and (7). Generally, the
fully forward values (*)=(")= (m+ 1) give the most stable numerical results, while
a choice slightly forward of center, e.g. (m+0.55), gives stable results with
improved accuracy. Denavit [13] and Langdon e7 4/ [157 recommend a diversity
of alternate centering prescriptions with improved damping characteristics for
unwanted high [requency disturbances. To simplify the presentation we will
generally mvoke the fully forward time-centering choice in the discussion that
follows.
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Following the moment method, we calculate j by time-integrating a set auxiliary
nmomentum equations

a'lx V.Pa( xto a B
Do 2w Il <E+v a ) (5)
ot m, m ¢

X

Here, the pressure tensor P, =P, = m, n,v,0, 4 (P,+ P,.) 6;,, in which 8, is the
Kronecker delta, P,=n,xT, is the scalar pressure, assuming isotropy of the ran-
dom part of the component distributions [31], and P,,; is an artificial viscous
pressure { 32]. We have assumed that classical collisions, which would tend to
equilibrate the various component velocities [7, 3, 10, 25-27], are negligible. An
artificial pressure is introduced so that the auxiliary equations will better mimic the
true fluid equations, when fluid components are present. Its presence appears to
have little significant effect under plasma PIC modeling.

A. Solution of the Maxwell-Moment System with Globally Implicit vx B

We begin by making the pressure explicit, and the velocity in the v, x B term
centered-implicit for the time integration of Eq. (5). Justification will be given in
Subsection a. Thus, integrating, we obtain

Jorr =i 4 pime B PO pjmtxQ, (6)

with jim + D = plmylm =D )" = jio) . P Ar/m + 1 x Q, Q= gB'"™) At/2mc, and

e¢=gAi/m. Operating from the right with the x€Q, and -Q,, we can rearrange

Eq. (6) to

[E(m+l)+E(m+ 1)X91+(E('n+“'ga)ﬂq]
(1+ Q%)

R (7
with
— [jfxm)' +j;m}' X Q{x + (jg(m)' . Qx) Q.z]

(1+92) ’ (75)

which expresses the new component fluxes ji" ™! in terms of the time advanced
E-fields E™* 1. Only the old, level-(m) densities and B-fields appear (through ) in
this formulation. Formally, Eq. (7a) can be written

. ()" X
(m+ 1) — 3(m) L E(m+1)’ 8
b i 4ngq, At ®)

in which the y, matrix is a component susceptibility.
Next, the component flux expressions are used with Ampere’s law to relate the
E-fields to V x B. Substituting Eq. (8) into Eq. (4), we get after some rearrangement

EW*O=[I+ ] "E™ +[I+y] 'cAtVxB™ Y, 9)
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in which I is the unit diagonal matrix, y =Y y, and EV"" =E"'—4n 3 ¢ ji™ At
Combining this with Faraday’s law, Eq. (2), one can acquire

B+ =B e AtVx [T+7] E™ 4+ Vx @ AP[I+ 3] ' VxB"+D (10)

The solution to Eg.(10) with subsequent substitution into Eq. (9) would now
complete our quest for an implicit field prediction. However, for a generally orien-
ted B-field the formal inverse matrix [I+y] "' is, perhaps, difficult to evaluate.
Furthermore, it mixes the B-components in a most complex fashion, and so we seek
simplification. We substitute Eq. (7a) into Eq. (4). This yields

E(m‘L“:E(ni)lj\—za_le AIZ[E(m-%l)_{_E(m+lixgq+(Eun+1)_QI)91]
+cArVx BT, {1

employing @2, = w?,/(1 + Q) and w;, = 4ng;n,/m,. With the additional definitions
0%=Y @2, D=(1+ad2%), E™ =E"™/D, ,=UQ, (U defining a unit vector
along Q), =3 2,02, A, e=Y Q22 Ar’ and y=c At/D, we convert Eq. (11) to

E'"1+1)=E(m"—E('7Z+“XUﬁ—(E(m+“‘U)Y€+}'VXBW+”. {12§

We now multiply both sides of Eq.(12) by the appropriate factors to form
(EV”*1-U) Ue on the left of the equal sign. Rearrangement of the result provides
an expression for the third term on the right of Eq. (12) in terms of E¥'" and
V x B * Y, Similarly, multiplication from the right with x U (and - U) leads to an
expression for the second term—following the Eq. (6)—(7a) model. Subsequeni sub-
stitution of these results transforms Eq. (12) into

Elm)” . E(m)" % U,B—I-“,'V XB(er“'*}'V XB(m+1) XU/?
(1+ 5%

E™ - U)+9(VxB" - U)JU(B* —e)
(1+ B} +e) ’

Emn—l):

+

(13}

This general expression for E™ 1) in terms of Vx B ! remains quite complex.

We note, however, that when the B-field is always perpendicular to the plane
containing E, then V x B is perpendicular to B, and the last term in Eq. (13) is zero.
Consequently, for ANTHEM we let U=k, B=B k. and E=E i+ Ej to produce
the simplified component equations

) . ; OB\ + by JB\m+ LN R
Etm+1 = E(xm) "BE‘VM) oy 2 +}’,BC E )"/ (14 8% {14a)
» : 3 ),
and
/ 3 ) ’;B(_m + 1) 53&1)14— 1} N N
E“"'“):(E‘,,”” +BE —y e )/ (L+57).  (14b)
’ dx éy I
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These are combined with

(14¢)

A F{m+1) (m+ 1) "
Bl =pgm AI[CE-" _@Ex J

Ox oy
to yield a single elliptic equation for B,.

a. Temporal Differencing

Let us now explore the consequences of our choices for the time levels of the
various terms in the ANTHEM algorithm. We shall assume convergence of the
predicted fields to the true fields. The iterative procedures that can lead to such
convergence are discussed in Section 5. We look at linear stability for isothermal
clectrons, undergoing x—y planar oscillations in a uniform, motionless ion
background, and in a prescribed ambient B,-field. The mean electron thermal speed
is ap=(xT/m)"?, and w, =eB_/mc is the gyrofrequency of electrons. We linearize

Egs. (2)-(5), assuming one-dimensional variations e** and dependencies

jx :j.\'l elw(lvt()) :jxlelwm a :jxl ém’ fOf example' ThUS, j'vm, :jyl C’m’ E("m) = Erl inl,
Em=E &7 and B! =B_&" Elimination of E,, j_l,l', etc., from the resultant
linear system leads to a sixth-order polynomial equation for . The moduli of all the
roots of this equation must satisfy |&} <1 for numerical stability. The ANTHEM
algorithm is useful when w, Az> 1. In this limit, from the ¢ solutions we find that

with explicit pressure

kay At
<
©, At)\l {15a)

is needed for stability. This agrees with the Ref. [3] result. Equation (15a) can be
weaker than the strict Courant limit, ka, Ar= a, At/Ax < 1, usually specified. With
centered implicit v\ x B"™ [ie., (*)=(m+ 1/2)] there is no time step constraint
imposed by the magnetic field. Alternatively, with a globally explicit, v’ x B term,
At is constrained by the additional relation

w, At
=@ st (15b)

Further scrutiny of the stability polynomial shows that electromagnetic waves are
strongly damped with the simple (1)=(m+1), Vx B centering used here for
exposition. The use instead of () < (m+ 1) in Eq. (4), and Vx E"") in Faraday’s
law, Eq.(14c), will minimize this damping. Relatedly, (*) < (m+1) should be
employed for the j**) currents in Eq. (4) to limit numerical damping of the plasma
momenta.

b. Spatial Differencing and Storage

Equation (3a) is most readily modeled numerically by storing the densities at the
cell centers, and the E, and E, fields at the mid-wall positions, as shown in Fig. 1.
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. NaxUy, Ax -
J e A gV Mo, Tor, P
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:
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—

FiG 1. Storage conventions used in ANTHEM for a typical cell of width Ax and height As.

Thus allows convenient cell-centered positioning of the Eq. (3b) electrostatic poten-
tial ¢. The placement of B, at the cell corners (or nodes) [30, 27 then allows for
simple differencing of Eq. (2). This is consistent with the storage of the 4, and 4,
components at cell-wall midpoints, along with E and E,, respectively. Finally, the
J. and j, current components are stored at the mid-wall positions, facilitating the
time advancement Ampere’s law, Eq. (4). Pressures and temperatures are slored at
cell centers. Since the E-fields and currents are stored at the wall midpoints, we
define wali-averaged densities, for example, n,,=(n, ,_,+#n, ,)/2, associated with
the £ and v, B. terms. and let v,, = j,./n,, in differencing Eq. (5). Similarly. «, =
(N, ,.1+n, ,.)/'2.

The elements of the Eq. (5) pressure tensor P, are taken as p, . =mni+ P+ P .
P, =mnii+ P+ P,, and P, =mni v, with the densities, pressures, and velocities
evaluated at the time level-(m). The x-directed artificial viscous pressure is, for
example, P,.=mniv, ,—v,,, 1) v, ,20,,, . and zero otherwise. For the storage
of the dynamic elements in the pressure components we have defined cell-centered
velocities. e.g, o, =(v, ,+v.,,,)/2. The mesh-staggering of velocities and
pressures has been imposed to assure the development of finite velocities in steep
gradient regions. For example, the magnitude of isothermal static pressure driven
velocity increments

vlr:

LaP  (n- e
mn dx  (n,_,+n)2 m Ax Hha)

is limited to the maximal value (2«7/m) (Ay/Ax) {for n, or n,_, #0). Had the
velocities been stored along with the pressures at cell centers as in [16], the
magnitude of the centered increments

581 71:2-14
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could grow without bound as, say, n, — 0. We, therefore, reject this alternate dif-
ferencing. Similar considerations apply to the transverse P,, gradients. Thus, at
each node we define an average pressure from the four cells around the node, e.g.,
P = (P, +P, , +P,_,,+P,_,,_1)/4 Also, we compute corresponding nodal
averaged densmes n'?). With these, the transverse increments are differenced as

. 1 ér,, | (PL3) — P&
0 — - X Al = — xv, 4,7+ 1 AY. L] ;
fax mn 8}* (I’IK )+”‘011)/7 Ay At. (16b)

Again, this assures finite accelerations, if, alone, n, or n,_; — 0. This may occur near
a vacuum-plasma interface, or at an internal #ole arising from the use of a limited
number of particles in PIC simulation. The above discussion is heuristic. To allow
for the future implementation of an r—z capability, and since, generally, Ax # Ay,
the various density averages mentioned are, in fact, computed with volume
weighted densities—effectively rendering them as mass averages. Combining these
results, we use, for example,

- (V : P)azx At/md = ’71.\'(5011,( + 5021\') (17)

in defining the x-component of the pressure tensor contribution to ji*' for Eq. (6).

Although we store only the velocity and current components normal to the cell-
wall faces, components parallel to the faces are needed as input to Eq. (7b) and for
the calculation of the E“ elements in Egs. (14a) and (14b). We designate such
parallel components with a hat, e.g., v for the parallel velocities. See Fig. 1. To
avoid the possibility of singularity in calculating such components, where, say, the
n,., are zero at an interface, while some of the v, are nonzero, we mass average as
for Eq. (16b), producing the supplemental component velocities ¥,. In the y direc-
tion, for example, these supplemental velocities are computed by the rule

(J» 1]!—1+Jv 1—1/+1+J'\ I*1j+‘]l 1/)/4

(m 51002

¢

(18)

an Ij+l/2’—

Again, the j, =n,,; in addition, cell volumes must multiply the densities for use in
AXx # Ay situations.

Next, for the E" of Eqgs. (14) we need old E-components parallel to the walls.
In the y direction along the left side of the cell we establish the level-(#2) supplemen-
tal field by a simple average E},E(E, wtEy et E, —1,e1HE )i
Similarly along the bottom of the cell we use £, =(E, ,,+E, ,_,. ,+E{ rge1 T
E, .,_1)/A Then, when Eq. (14) is differenced for the left cell wall. it gives the time
level-(m + 1) component pair (£, E ), while at the cell bottom it provides (E., E,).
Note that with B, stored at the nodes only the hat-free components of the £- field
appear in the differenced form of Eq. (14c).

In forming the B and y coefficients for Eqgs. (14) we use the simple, nearest-node
averages of BY™, ie, B =(B{") + B . )/2 along the left cell wall for the
computation of (EUn+1D) E""“’), and B+ D= (Bm+1) 4 Bm+1) )3 at the cell

z, 654 1 z, 6 i+1
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bottom for the determination of (E¢"*+ 1, E\*+1). The E-field-aligned Vx B com-
ponents in Eq. (14) are easily differenced. In Eq.(14a), for example, ¢B,/¢y =
(B...,+1— B...,)/Ay. Calculation of the remaining components is a little more
complex. We first construct cell-centered B,-fields. Again, for Eq.(14a), BL%) =
(B.,,+B.,.1,+B., .\, 1+B.,,;1)/4 Then we use, for example, ¢B./Cx=
(B.°) — B _)/Ax. This implies the coupling of B. , to the corner terms

B:J*_rl,j'r_i'

c. The B_. E_ and E, Determinations

The more complex B-derivatives derive directly from the use of an implicit
velocity in the differencing of the v x B in Eq. (5). They contribute nonsymmetrically
to the matrix equation for B. corresponding to Eq.(14). Thus, intrinsically, a
9-point, nonsymmetric elliptic solver is required for the B. solution. For this we
have used an ILUCG solver that was provided by Anderson [33] and improved
and vectorized by Jordan [34, 357. The ILUCG solver requires 19 full-mesh arrays
and provides 15 solutions/s on a 50 x 50 mesh to an accuracy of 1 part 1 10°
Alternatively. we have employed a vectorized Chebycheff solver provided by
Manteuffel [ 34, 357. This is twice as fast, but requires 27 full-mesh arrays.

Once the B_ field has been determined by these procedures, the E-fields foliow
from substitution of B, into Eqgs. (14a) and {14b).

The globaliy 1mphc1t vx B formulation exists as an effecme workmg optxgn for

N . s [ul'S S A W S A RTOYYI R & a4 r 3

algebra required to set up the cmnts for Eqs. (14), the need for a 9-point, noun-
symmetric solver, and the difficulties in extending this approach into a fuil-ficld
algorithm (with B.. B, and E.) has encouraged our development of an alternate,
explicit magnetic approach.

B. Explicit Magnetic vxB

In our simpler alternative approach the velocities for vx B are left explicit n
selective aspects of the differencing. Thus, we integrate Eq. (5) formally to produce

j(1m+1)____ J(zm) + n(ﬁm)gx(E(m +1) + vg*, « B(m)/C) (19\1

with JU"=j""—V-P A¢/m. Then the formal substitution of Eq.(19) in Eq.({4)
yields

E™ —dny ¢, J0" A1 =3 02 APV 'xB")c+c AtV x B

E[m+1)____
(1+w, Ar?)

(20)

>

in which ), =4ng n{"/m, and 0wl =3 w?,.
With only a single B. component of the magnetic field and plasma motion and
acceleration restricted to the x—y plane, the components of Eq. (20) can be written
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ot 1) ) pom . aBgm+l) /

Er+D=E, — (U B™)fe+( A2 = /c At (21a)
(1) (s 5B£m+l) /

E! =FE,, +(UDB™)/c~ Aﬁ——a——— /’cAz, (21b)
- / AY

for which we have defined

E™ 47y ¢,d0 At

E,= o)
0 (1 + w2 AF%) (22a)
(1 2 g AP YD (22b)
(1 + w2 Ar) “
and
ZA 2
A= SA00 (22¢)

(1+ w2 AL

Here, E; is the reduced Eq.(20) for B=0. In one dimension it constitutes the
implicit E-field solution for electrostatic problems [9, 12]. To calculate U and A,
we evaluate the w,, and w,, factors by using the wall averaged densities, n,, for
Eq.(21a) and n,, for Eq.(21b), respectively. The velocities U run along the
cell-wall surfaces (see Fig. 1) and are computed from the supplemental ¥ velocity
components, such as given by Eq. (18). The B for Egs. (21) are evaluated as
averages at the cell-wall centers.
Combination of Egs. (21) and Faraday’s law, Eq. (14c) yields

@ aB(_m+1) a 83(_m+i)
(m+1) _ 7 AZ = . 2 =z — Rt} 2 P
B: éx ( Y ox ) dy (Ax ay ) B: (23a)

with
6 ® a A
BV=B™ —c|VxEy}. At~a—-(U‘Y ’Bg’"‘)Ai~5—(U§ YBU™Y At (23b)
X .

The bracket’s z subscript refers to the only nonzero component resulting from
vector operations in Eq. (23a).

a. Our Choices for v\

With (¥)=(m+%) the flux equation, Eq. (19), reduces to Eq. (6) with the E-
dependent solution, Eq. (7). We use the equivalent of these expressions to advance
the plasma velocities, as detailed in the next section. There, the implicit choice for v
assures us that the component fluxes and velocities will be finite, regardless of the
magunitude of 2, Ar.

Similarly, the choice (*})=(m+4) in Eq.(20) for the E-field produces an
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expression that can be rearranged to yield Eq.(13). Changes in Vx B can then
generate both parallel and orthogonal changes in E. In all the problems run thus far
with ANTHEM, we find, however, that the explicit choice (*)= (m} in Eq. (21} s,
in fact, sufficient to yield physically plausible results, in essential agreement with
those from the more complex implicit procedure.

Finally, by making the explicit choice (*})=(m) in Eq.(23b), we are led to
the relatively simple 5-point elliptic Eq.(23a) for B.. We take the view that
(*Y=(m) in Eq. (23b) is the first choice of an iterative procedure leading to the
proper implicit selection, (*)= (m+ }). For the simple case of a single B-component
and planar cross-field plasma motions, analysis shows this iterative process to be
stable for arbitrary values of the magnetic stability parameter M of Eq. (15b). This
1s a consequence of the fact that perturbations in B. drive velocity changes that are
principally orthogonal to the direction of B-field advection from the vx B teim. In
practice, we have found no instance when the B-fields from this simpler algorithm
differed in any substantive way from those derived via the more complex globaily
implicit equations.

b. Solution to the Simplified B. Equation

To complete the ficld solution we simply carry out the explicit Eq. (23b) updates,
producing B'", and then treat the resultant Eq. (23a) expression with an elliptic
equation solver. The last two terms in Eq. (23b) represent advection of B\ with
the velocity U. To avoid numerical instability we have used donor-cell spatial dif-
ferencing [36]. The addition of Van Leer corrections [3, 287 would render the B-
field advection with less numerical diffusion. When the time step is set to obey a
Courant condition on the hottest electron component, it follows that U, Ar < Ax,,
s0 that we can advect the old, level-(m) B-field. Equation {23a) exhibits five-point
symmetric coupling of B. at the node /, j to B. at the neighboring nodes i + 1, j and
i.j+1. It is readily inverted with an ICCG solver [37] once B'" is known. We
simply invert the matrix equation MB("+ 1) =B!" for the unknown elements Bv" ~ 1),
For this we have used the decendent of a solver provided by Kershaw [387,
modified and vectorized at Los Alamos by Jordan [34]. The ICCG solver can
accomodate symmetric elliptical problems with 9-point discretization. It requires
only 15 full-mesh arrays and equals the speed of the more core-demanding
Chebycheff solver.

With B. determined, E can be determined from Egs. (14a) and (14b) [equivalent
o using (*)=(m+3) in Eq.(21)]. However, we have found it simpler and
sufficient to use Eq. (21) directly with (*)= (m).

c. Physical Interpretation

For large w,, At the E, of Eq. (22a) reduces to — (1/en,) V(n,kT,) (assuming
negligible electron drift). Thus, the second term on the right side of Fa. (23b) can
represent a thermo-electric source, going as Vn,x VT,, for new B-field [39, 407.
The last two terms represent advection of B. with the fluid components. Finally, the
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partial derivative terms in Eq. (23a) imply a dispersion or separation [41] of the
advected B, from the moving fluid elements over the skin depth A. Alternatively, in
tenuous plasmas, for which w,, Af <1, Eq. (22a) limits as E, — E'™ since remain-
ing fluidic terms in Eq. (13a) are small and A — ¢ A{, so that Egs. (23) reduce to a
model for the propagation of light.

For large time steps (and ions moving no faster than the electrons) the effective
velocity U reduces essentially to the electron velocity, U—v,, where v,=
(n.v.+n,v,)/(n.+n,). Also, for large As our A becomes the electromagnetic skin
depth ¢/w,,. Moreover, Egs. (4) and (19) give v,, — (¢/4nen,)(0B./Cx) in this limit,
so that the ions in one-dimensional x-directed problems, are, for example,
accelerated by

1 @0 B?
E.=- T<;1EKTE+;>, (24)
en, cx 8n

as employed in the early magnetosonic shock propagation studies of Ref. [357.

d. Applicability of the Simpler Scheme

In all the problem thus for examined with ANTHEM no significant difference has
been observed in the results obtained with either the “globally implicit,” or the
“magnetic explicit” modes of the field algorithm. Thus, no difference was seen in the
demonstrative calculations at the end of this paper, in our recent calculations of the
Nernst advection of B-field in collisional plasmas [42], or in our recent com-
putations of the plasma dynamics in a Plasma Erosion Switch [43] (run for the
Eq. (15b), M exceeding 20). The explicit magnetic approach should be attractive,
due to its relative simplicity. But its chief value may lie in its possible extension to
full-fieild problems. While Faraday’s law generates a most complex system from
Eq. (13), the explicit magnetic approach yields the apparently more tractible
procedure of the next section.

C. The Full-Field Algorithm

The explicit magnetic vxB approach is readily extended to provide
straightforward solutions for problems in which all the six field components
(E\,E,,E,, B, B, and B,) are active. For this extension 4_, £, /., and v_ are all
defined at cell centers, B, is stored at the bottom cell-wall midpoint, B, is kept at
the left side cell-wall midpoint, and ¢/0z remains zero. Motions along the B-field
components are allowed, and the pressure tensor is generalized accordingly. The
components of Eq. (20) then become

cy ox

E(nz+l):E +
00 dx dy

e Ar {8Bm+ 1D dBimt ABm+1y  gRlm+ 11N
K{ S P j+( : )E} (25)

with Egy = E;— U™ x B"/c from Eqs. (20) and (22), and K=1+w,, Ar’. At the
beginning of a time step Ey, is completely known.
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Equation (25) can be combined with Faraday’s law to produce the three com-
ponent eguations

a 1 (58(171+}.! aB(nl-Fl))}
(n7+h: (m) __ { _ I i _ x /266‘
B\ Bx C AZIV X Eoo} < C A[ 6}' {K ; 6’\' 5}~ y ' J

]
P

C‘; 1 'aBim+l) ﬁBlm—{»I)\\
\m+1):Blm\__ N { 1 t— __( i _ X L’ (\26&)
B o e AV X Ego}, +C A ,X{K\ i 5 /}), )
and
a 153"7'+U a / 1 aB(_m+1;\\
(e 1 B ¢ ALV x By ). — ¢ Ar 4 [ = &2 +—(— : ,
B_— B_— C 1Y X Bggy- cA {@X(K £ > 5}' X a}’ }}

{26¢;

The B. equation is equivalent to Eqgs. (23), except that additional coupling to B,
and B, is included explicitly in the 3 w5; Ar*(vi"! x BY)/e term of Eqg. As with the
earlier, Section B more restrictive version of the algorithm, a solution for B+ is
easily achieved with an ICCG solver.

The remaining B,, and B, equations are strongly coupled, and through
elimination would lead to separate fourth-order equations beyond the capabilities
of our elliptic solvers. We, therefore, bypass these equations and turn instead to the
vector potentials.

We return to Ampere's law, expressed in terms of A and ¢ with the aid of
Egs. (3). Setting (*)=(m+1) in Eq. (4) and letting V- A=0 for the Coulomb
gauge, we obtain

_A(m+l)+')A(m)_A(m——l)
c Ar

e ATVIATED S Vgt Yot _4n Y g jmt D A

IR le B

[

Next, summing over the components of Eq.(19) [here. with (*)=(m)], we

produce
/ (I
TS, W TEAIW P W < B 1T R JO - S S1P-2 ST LA :
i —te— :
- w; Al| ~—— . 1484
L ©pr \ c )

Substitution of the Eq. (28) flux sum into Eq. (27) then yields

CZ A’Z VZA(mkl)
A(m+1)_ _ :Alm)_ AtV {m+1y At Eon. ,\293
(1+ 0% AD) CAIVY ¢ Al Foo ’
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We need only the z component of Eq. (29a), which is decoupled from ¢, ie.,
ct A’
Af_'"*“—TVZAf_’"“’:Af_'"’~cAt{EOO}:. (29b)

This elliptic equation is symmetric and readily solved with our ICCG package for
A,. Then,

5A£rn+1)
By === (30a)
and
aA(,er“
T (30b)

For maximum stability of the algorithm the FE-fields should be obtained from
Eq. (13), although the direct use of Eq. (25) may suffice (as does (*)=(m) for
Egs. (21) in the restricted B = B.k case).

For numerical stability with the explicit coupling terms, i.e., Vx (U" x B"™) At
in ¢ At VxEgy of Egs. (26), we must respect a Courant-like time step limit

min[Ax, Ay]

< ) 31
e AR ANTAR (1)

In our experience, limited to a single B-field component, we have used the more
stringent rule obtained with max[|v|,] replacing U. The expanded coupling term
includes elements of the form d(v, Bg)/0x,. These should be modeled with donor-
cell or Van Leer differencing for additional stability.

We can report that in recent full-field applications of the alternate VENUS code
algorithm [ 18] to the Weibel instability problem [44], no noticeable changes were
observed [45], when velocities in the VENUS vxB term were switched from
implicit to explicit values. However, our full-field extension has nos yet been tested
in ANTHEM. In the very least, it should be reliable for weak B-field problems
(M < 1), where it could certify the results of more complex algorithms [ 16, 20].

4. PLASMA ADVANCEMENT

A. Particle Motion

Once the advanced fields have been calculated for any computational cycle, the
velocity w, and position x; of any collisionless PIC particles used to represent a
plasma component can be advanced in accordance with Newton’s Laws
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du u,xB s
S Qg Hm2 {32a}
da m ¢
dx
=, {32b
dt
We difference these as
(m+‘u'2)x (#2)
u}m+l):“yn)+2[_ E(l?l+l)+u[ B \A[ 1332)
’ m, c /
x;m+1)=x(1m)+u}m+l*2)A[' (33b}

The velocities are centered in Eq.(33a) to assure energy conservation in the
gyromotions.
For each particle / the solution to Eq. (33a) can be written

[E(,n+1)+E(n1+HXQ[+(E(m+1}.gl)911

{rm+ 1) __ gqim) P
L Y =, +&; (1+Q2)
/

with

[u}/n)+u}m)xgl+Eu}m}.ﬂ[} Q[] \34b}
(L+82)

()
u,; =

and ¢,=gq, At/m,. For stability and accuracy the E- and B-fields should be
evaluated at the advanced level-(m + %) particle positions. These positions can be
found by the Newton-Raphson iteration of Egs. (33b) and (34). The iteration
procedure is outlined for one-dimensional problems in Ref. [37]. Typically, three
iterations are sufficient to isolate the positions to one part in 107,

Clearly, the accelerations, Eq. (34), experienced by a particle which just happens
to be located at a cell-walil center are very similar in form to the accelerations,
Egs. (7), experienced by the corresponding auxiliary fluid at the same points. That
is, each cell-wall center point may be thought of as a particle of wall-averaged mass
accelerating in the local fields. A difference is that the fluid velocities
v [ =j/n'"] include an increment due to the pressure gradients, which is, of
course, lacking in u'™" of the particle update expressions.

As the final position of each particle is determined, we add its contribution to the
local cell-centered density, currents, and pressures of the component it represents.
The usual bilinear interpolation procedure (or area-weighting) [1] is used to
attribute the particle contribution to its neighboring four cells. The components
P ... P,,and P, are accumulated directly for use in Eq. (6). Currents j attributed
to the cell-wall centers for Egs. (14) and (20) are determined from averages of the
accumulated cell centered values j. For example, j.. = (Foe . 1, +Jsc ., )2, such
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that, again, v,, =J,./B,.. Also, the E- and B-fields are first averaged to the cell cen-
ters before they are weighted to the particle positions—to eliminate self-forces.

The area-weighted currents accumulated by these procedures will satisfy flow
continuity in some sense, but generally not in detail. This can cause difficulty in
accurately determining implicit fields consistent with Poisson’s Eq. (3a). Con-
sequently, an additional set of true currents j is determined by precisely accounting
for the density changes in neighboring cells as each particle moves within or across
cell boundaries during a time step. The construction of these improved currents was
first discussed by Morse and Nielson [46]. We use a variant of this construction
procedure that was recently designed by Gisler and Jones [47] for use in a
relativistic implicit PIC algorithm [48]. In Section 5 we show how these improved
currents can be used to provide important corrections to the fields.

B. True Fluids Update

In hybrid modeling one or more of the plasma components is treated as a it true
fluid. Such components are advanced via a continuity equation

on,
ot

=-V: [n:(vx]’ (353)

a momentum equation, the equivalent of Eq. (5), and an energy equation
a[(%KTm) nm]/at =—-V- [(%KTu) n-xvx)] - P'x v ¥, — v q,- (35b)

For the heat flux q, in Eq. (26b) we use Braginskii’s expressions [31], flux-limited
to assure that, for example, electron thermal energy is transported no faster than
the mean electron thermal speed.

Strictly speaking, use of the fluid modeling can only be justified when the plasma
component is in some fashion sufficiently collisional to maintain a nearly isotropic
distribution among its elements. This might occur from turbulence, reflection off
confining B- or self-consistent E-fields, or simply from classical collisions. We have,
however, neglected classical collisional coupling between the components in the
present development. The implementation of collisional effects is outlined
elsewhere [26]. Formally, we can close the system of Egs. (5) and (35) with the
assumption P, =n,xT,. The results from fluid modeling in collisionless regions can
then, at least, be used as a basis for comparison with the results from more com-
plete particle simulations.

Following Gentry ef al. [36], DeBar [49], Sutcliffe [50], and Youngs [51], we
split the hydrodynamic update into a Lagrangian phase and a remap phase. During
the Lagrangian phase we accelerate the cell-wall midpoints under the action of the
pressure gradients and fields and then move these points to new positions in accor-
dance with the new midpoint velocities. During this move the cell densities can rise
or fall. Correspondingly, the component temperatures can increase or decrease
through the action of hydrodynamic work. Then, in the advection (or remap) phase
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the walls are slipped back to their original positions on the Eulerian mesh, and the
component materials are allowed to cross the walls into the neighboring cells.

The new velocities for the Lagrangian phase are obtained, using centered implicit
velocities in the v x B terms, as for Eqgs. (7) and (19). These velocities are identical
to those that would come from Egs. (7) with v, =j,/n,, except that the dynamic
terms, i€., m,n,v,v,, are omitted from the pressure tensor. (The dynamic terms
contribute to an estimate of advective effects in the field solution; these effects are
recovered in the second phase of the hydrodymic advancement procedure.) At the
left cell-wall center we compute the pair (v,, 7, ), and at the cell bottom we calculate
(£, 0,). Only the values v, and v, are then used to move the cell walls. With these
new Lagrangian velocities (henceforth designated with a tilde, e.g.. ©,.), we proceed
to update each fluid component in turn. For each, the operations are split into
separate x- and y-directed one-dimensional problems. In a given cycle the x dirsc-
tion may be updated first, followed by the y direction. In the next cycle this order is
reversed. The flow in each direction is treated in accordance with the Fluids Update
discussion of Ref. [3].

Completing the Lagrangian phase of the a-fluid in the x direction, for example,
we move all the cell boundaries, in accordance with the 7, values, from x to
temporary positions ¥,, for a change Jx,. The new Lagrangian densities then
become 7, =n{"(Ax"/A%) with Ax=x,,,~x,. Correspondingly, the hydro
dynamic work term in Eq. (35b) produces the temporary new temperatures, 7, =
T — P(dv,,/0x) At, in which P’ includes the x directed artificial viscous pressure
P,.. For maximal accuracy with stability the temporary positions should be located
through the use of an additional predictor-corrector step, by which the old pressure
gradients and fields at the old positions are first used to provide accelerations to
half-time velocities and positions, with this data subsequently employed to provide
the pressures and fields for a final acceleration and advancement to the end of the
time step. At present. our algorithm neglects this extra correction.

In the follow-on remap phase for component-x, we advect first density, then tem-
perature, and finally the two components of velocity. As each vertical cell wali is
returned to its initial position, a flux

L)

Je=(6x/A) R =i 7, (36a)

crosses the wall. In the density advection calculation second-order accuracy is
approached by using Youngs’ [51] extrapolation

= e Al D A i "Li
¥

containing £ allows Ior a density gradient near the donating cell. The purely
second-order choice D= D= (A, ~#,_,)/Ax can give rise to nonphysical maxima
and minima in the solution. Consequently, nonlinear limits are set on O which
guarantee monotonicity, while minimizing numerical diffusion. The limiter used is

D Ax= Rmin(|D Ax|, 2|, — 7, 27, — 7]}, {36c)
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for which R=0 if sgn(7i,— 7i,) #sgn(#, —#,), and R =sgn(/i,—7,) otherwise. Also,
d=iwith r=i-2,if,>0, and d=i~ 1 with r=i+ 1, if 5, <0. More details are
given in Ref [3]. The Van Leer method [28] used here, as interpreted by
Youngs [51], is akin to the FCT approach of Book et al. [52], except that the dif-
fusion corrections are made as an integral part of the advection update, rather than
in the separate antidiffusion step that is characteristic of FCT. The new density
following the x directed advection is

A= [AAR+ (o ~Je 1) At]/Ax. (36d)

Similarly, as the vertical walls are restored to their starting positions, they are
crossed by a flux of specific energy de =/, T, leading to the new temperature

700 = [ AXT+ (e, — O, , 1) Ar]/(n Ax). (37)

The fluxed T value is determined from Eq. (36b) by substituting T for » and letting
n=min(|j,| At/(n Ax),, 1). Again, u indicates the donating cell.

Next, for the advection of the longitudinal v, velocities, we construct the cell-
centered fluxes /', =(J, , ,+/.,)/2 and 0=/ 0, and we determine that

Pt U=T4a AZ, + (0D, — 6D, , ) At]/(n, Ax), (38)

with 0. derived from Eq.(36b) by changing » to v, with p=min
(7] Arf(n, Ax),, ).

Finally, the transverse velocity component v, is advected with the averaged flux
Je=Ue ., +Je.,~1Y2 To produce ¢, we change n to v, in Eq. (36b) and use the
definition # = min(|j;| At/(n, Ax),, 1). Then we construct the average specific

momentum flux 6¥ =/s,, which allows us to complete the x-directed advection
with the result

oyt = [, AZD, + (61, =61, 1) Ar]/(n, Ax). (39)

A corresponding set of updates is then made, starting, for example, with the inter-
mediate 7 property, to calculate the effects on each of the moments of the y-directed
advection.

Special care must be taken at the matter—vacuum interface for each of the fluids.
Boundary densities n, and n, below a floor value #,,. are considered vacuum den-
sities. We set ., for example, to zero, when n'{™ <n,, . Typically, n,,. is set four
decades below any physically important density in a problem. The Egq. (36b) #
values are set to unity in the boundary cells to assure donor-cell advection up to
the vacuum interface. Also, the static and artificial pressures are set to zero in any
compressive cells bordering the vacuum to avoid erroneous numerical
hydrodynamic heating of the edge material. In Ref [3] we recommended the
implementation of entropy advection, in lieu of internal energy advection, to avoid
the numerical edge heating. While this was generally effective, it was not readily
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extended to imperfect gases or the usual tabulated equations of state. Thus, here we
return to more standard procedures. The additional use of volume-of-fluid (VOY)
techniques [53, 547 is contemplated for a more refined modeling of the vacuum

boundary.
Following the advection updates, an implicit evaluation of dn,x
(6T, 0t)= —V-q, permits the determination of additional 7', changes due to the

last term in Eq. (35b). Thus, we can model the effects of flux-limited thermal
conduction.

The availability of fluid modeling is particularly useful in treating plasmas with
steep density gradients, which might otherwise require a very large number of
simulation particles to represent the dense side of an interface. Such steep density
gradient regions are prominent in CO, laser-driven transport problems near the
critical surface [ 557 where the laser light is absorbed.

5. FieLD CORRECTIONS

In the straightforward application of the Section 3 algorithms to steep-gradient
laser driven problems, we have found that, while the calculated B-fields are
physically quite plausible, the E-fields must be in error, since the electrons gradually
separate from the ions, spreading over many Debye lengths into the adjacent low
density regions. Our implicit scheme should minimize such nonphysical separation
by manifesting sufficient charge separation related E-field components to pull the
electrons back to quasi-neutral positions. However, the basic Section 3 algorithms
will fail to manufacture such corrective fields, since Eq.(4) makes no direct
reference to the charge densities, and since the currents employed in Eq. (4) will
generally fail to obey fluid continuity in detail.

More specifically, from Eq. (35a) after referencing the old plasma densities #l™
we can produce the time-integrated auxiliary continuity equations

Il;”'+l)=ﬁ(j(”')~V'j(y'7l+L’AT. {40)

Given the implicit field solutions for any computational cycle, Egs. (19) will
generate predicted currents, which can be placed in Eq. (40) to provide predicted
densities. It is these predicted densities n{™+1' that will differ, in general, from the
true densities 7" that accumulate after the particles and/or true fluids have
advanced. The two densities will differ because, for example, the Eq. (19) currents
are determined from spatially centered average densities and fields evaluated at the
cell-wall centers, while the true plasma advancement uses particles that are
accelerated in area weighted fields and fluid currents calculated with Van Leer
averaged densities.

A. The Longitudinal E-Field Correciion

In devising a correction for the difference between the densities predicted each
cycle and the densities actually achieved, it is first useful to observe that the F-field
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can be divided into longitudinal (irrotational) and transverse (rotational) parts, i.c.,
E=E;+E, with VxE,=0 and V-E,=0. Also, note that in Coulomb gauge (for
which V-A=0) V-E=V-E,= — V% [56].

Focusing now on the longitudinal E-field component, we take the divergence of
Eq. (4), obtaining

V'E("'+l)=V‘E('H)~4TEanV'j;erl)At. (413)
Substitution for V- E from Eq. (3a) then gives

ann;(m+l):zqxn‘;m)_zqyV.j;m+[)AL (41b)

Equation (41b) will agree with the sum of the Eq. (40) components, and the
predicted E-field will act to correct the charge separation errors just discussed, if we
make the change E"™ —» E™ =E" + SE!" in Egs. (4) and (20), such that

V-E™ =4r Y g, . (42)
This is accomplished by letting
V-0Ei™ = —V25¢" =4n Y gq,n™ V- -E". (43)

The solution §¢'" to this Poisson equation is readily determined using the
FISHPAK routines of Adams, Swarztrauber, and Sweet [57,58]. Then,
SEJ™ = —~ V54, and

E" = E" — Vg™, (44)

This is equivalent to the one-dimensional field correction introduced by
Denavit [13].

Integrating Eq. (42), we see that for one-dimensional electrostatic (B=0)
problems with, say, reflecting boundaries at x=0, one finds that EU"' =
4n Y q, |5 A dx applies. It follows that Eq.(20) for the predicted future field
reduces to

4r Y q,[ [zl dx— Iy Ar]
(14 w2 AF)

(m+ 1)
EY =

, (45)

in agreement with Eq. (4) of Ref. [3]. We can see that Eq. (45) includes a corrective
term to eliminate density deviations by considering the limit w,, Ar> 1 with

P - L b1

I, S SV Y S S S At e i al
R P T P —

will yield a predicted current ji** ' = — (¢/m,) nE, and by the continuity, Eg. (40),
a corrective change in density for the next cycle n'"* Y —n' = (At/Ax)= — dh.
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The field corrections derived from the density deviations 6A" can also be
associated [ 56] with longitudinal current deviations, i.e..

SE = — Vg = —4n Y g, 81 At V= —4n Y q (iU =) Arm 1 46)

The 8f,, represent the true excess longitudinal flux over the j, predictions of the
previous cycle which acted to bring about the density deviations di,. The
longitudinal fluxes can be derived from the full fluxes by the operations:
—V*) =V -j followed by a Poisson solve, and then j,= —Vy.

Experience has shown [3, 9, 10, 13, 597 that use of the longitudinal correction
provides physically plausible, quasineutral solutions across steep density gradients
in the modeling of dense one-dimensional plasmas. In iwo-dimensional
applications, however, use of this correction can have disastrous consequences.
When the gradients in density are such that w2, Ar* ranges from. say, 1 to 10° over
a few cells, the addition of the V¢ term leads to the establishment of electrostatic
potentials up to 10 times the energy of the hottest electrons produced in laser-
driven problems and to the development of B-fields 10 times larger than those
determined via an uncorrected calculation. Examples are discusses in Section 10.

At first, we were surprised by these difficulties stemming from the longitudinal
E-field correction, since it mimics the Boris [30] correction which has been used
successfully in explicit two-dimensional codes since 1970. Furthermore, earlier
two-dimensional implicit studies [ 16-19] had reported no related problems. Later,
we found that the new problems arose chiefly in steep density situations that had
not been probed before, but which were now accessible, by virtue of the hybrid fluid
modeling of the background laser illuminated plasma. More specifically, the new
difficulties were related transverse E-field errors introduced along with the
longitudinal correction under implicit modeling.

If j, is treated explicitly, [(*) = (m)] in Eq. (4), then the addition of —¥é¢'™ 10
E" will produce only a longitudinal change in E“*". But once we go to the
Eq. (20) implicit formalism, the effect of this addition is to produce a net change

S AL

SEmT - Vbqi( . (47)
(14w A )
in the predicted E-field. This change is likely to have a transverse component
dE™+1 (for which V-SE{"+U=0), since, generally, Vx[—Vdp™
(1+wj, Ar?)]#0. The rotational component SE;”* ! is negligible when w2, Az is
either small compared to unity or nearly constant—the regime of most earlier 2D
simulations [ 16, 18]. This component can produce a change B =
—c At VxJOE{" " in the B-field calculated for the next cycle. It can also contribute
to the irrotational fields (and potentials) calculated in the next and any subsequent
cycles, since in Eq.(20) V- [JE"/(1+ w2, Ar*)] is unlikely to be zero. It canm,
therefore, lead to the secular growth of B and ¢ seen in our steep gradient
simulations.
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B. The Transverse E-field Correction

To eliminate these difficulties stemming from the longitudinal correction, we can
employ the Eq. (44) replacement, but with the addition of a transverse field correc-
tion as well, ie., one can use [60, 26]

E) o B = B _ Vagtm 4V x 1 (48)

in Egs. (4) and (20). Taking the divergence of Eq. (4) with this alteration, one can
see that the additional V x 1" term makes no change in the previously achieved
agreement between Eqs. (41a) and (41b). The A-function should be chosen so as to
cancel exactly the transverse consequences stemming from the introduction of
—Vég. That is, we choose to require that the net correction make no change in the
calculated B-field for the next cycle. From Eq. (20) we see that this is accomplished,
if

—V5 (m) \vJ (m)
yu| YTV (49)
(1+ w; A7)

For the planar plasma flows modeled, only a z-component is required for A
Consequently, after multiplication by ¢? Ar* Eq. (49) rearranges to

/ (m) (m)
£ (Af, e ) + 2 (Az 0 ) — C(x, 1) (50a)
odx\ - Ox ay oy
with
a 65 (m) a as (m)
Clx, y)= —7<A% ¢ )+—.—<A%—‘fi—). (50b)
éx\ T oy ay\ - ox

The factors A, are defined through Eq. (22¢) for the left and bottom cell-wall cen-
ters. We can readily solve Eq. (50b) for A", using the ICCG package employed
earlier on Eq. (22b) for B.. The use of A=4,e, in Eq. (48) completes the field
corrections.

Note that with globally implicit v x B differencing JE”* ') becomes a more com-
plicated algebraic function of Vg™ than indicated by Eq.(47) (as evident from
Eqgs. (14)). Still, Vx SE{"+ 1 =0 can be solved for a corrective 4. Again, the greater
complexity with this differencing leads to a 9-point, nonsymmetric matrix equation,
requiring either the ILUCG or Chebycheff solvers.

As in Eq. (46), the A-function can be associated with a transverse current
deviation,

VxAm= —an Y q, i A= —4n Y. g, (50 i) A, (51)
where the dj,,, denote the additional transverse fluxes needed to assure that B
undergoes zero change, when the longitudinal correction V3¢™ is added.
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The use of the net Eq. (48) correction gives well-behaved. physically plausible
results in the simulation of plasma problems with steep gradients. Quasi-neutrality
is achieved where appropriate. The caiculated potentials are O(xT,) and the
B-fields evolve smoothly. See Section 10. However, our assumption that B shouid
be unaffected by our net correction is somewhat arbitrary and principally justified
by its apparent success in simulation.

C. True Current Corrections

We need not use the accumulated density deviations to form the longitudinal
E-field correction, or the zero-changed B-field condition to estimate an effective
transverse current correction. Instead, we can employ the deviations of the
true fluxes j""*+! from the predicted fluxes j'**' to form both corrections
simultaneously.

True fluid fluxes are readily available and, in fact, used [see Eq. (36a)] to update
the various fluid moments. True particle fluxes can be accumulated. as indicated in
Section 3A and Ref, [467, by accounting for the detailed passage of particles within
and across cells. such that continuity, Eq. (35a), is obeyed with precision. The
improved particle accumulation procedure [46, 61] demands roughly 280 lines of
FORTRAN coding, while the older bilinear prescription requires about 24 lines. In
explicit models the more tedious accumulation also tends to be more noisy {46]
(by referencing one boundary for a typical passing particie instead of two [627}.
Thus. the bilinear procedure has generally been preferred. However, with implicit
fields the excess electrostatic noise tends to be suppressed, and, more importantly, a
transverse correction is automatically obtained—with no a priori assumptions as to
its effects on B+ ',

In their original explicit application [46] to simulation problems, the true
currents were used directly in a leap-frog scheme to advance the E-fields from level-
{m) to level-{m+ 1). There were no corrections or iterations. Corrections were
needed 1n alternate schemes [ 30, 627 which accumulated current bilinearly. By con-
trast, the E-fields in our implicit calculations are first advanced with predicted
currents, so that the true currents must make their contribution either as a correc-
tion deferred to the next time step, or iteratively in the present time step. Here we
shall discuss the deferral procedure. Iterative correction is detailed in the Appendix.

At the end of each cycle, using the newly calculated E'*" and B™ "' we
evaluate the predicted currents implied by Eq. (4) by forming

— 47 Z qxj;’71+ 1) A[(m) — [(E('"+ by Etm)} —c Allmiv X BT 1 )] {52\)

Subtracting this from the true flux accumulations, we establish —4x Y ¢ 85"+ "
Ar' Now in the next cycle old data is referenced by the index change

581 7t 2-15
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(m+ 1) > (m). Thus, to repair the j¥+1 of the next cycle, so as to eliminate the
error of the previous cycle, we make the correction

E(m)_)E(m)"EElm)_A'.an’ 0‘j;m)A[(m/” (53)

in Egs. (4) and (20).
To check the accuracy of this correction, we take the divergence of Egq. (53),
obtaining

V- E"' —y.E™ _4x Z g, V- ojum Apim— 1
=4n Y g,n +4n Y g, (7" —nim)

=4ny gq,7lm, (54)

which agrees with Eq. (42)—-proving that Eq. (53) replicates the longitudinal E-field
correction. In addition, the remaining part of the "’ sum provides a transverse
correction replacing the A-function part of Eq. (48), i.e., replacing Eqg. (51). We have
found that in the simulation of laser irradiated steep-gradient foil problems the
Eq. (53) correction, using the true currents, gives smoothly evolving. physically
plausible results. The arising potentials are of O(xT,). The B-fields calculated are
very similar to those from the combined longitudinal and A-function corrections.
Eq. (48), except that B. contours in lower density regions tend to be smoother and
less convoluted (see Section 10). So the current correction approach gives
reasonable results, avoids the ad hoc assumptions motivating the use of V x4,
avoids the Eq. (50a) elliptic solve, and it can be derived as the first step of a con-
vergent iterative procedure. For these reasons this final correction is peferred.
However, should one choose to avoid the complex current accumulation
procedures demanded by this method, the combined longitudinal and A-function
corrections remain available as a useful, but approximate, alternative.

The significance of the current correction just described becomes more clear,
— L -t o M P . oL A £ o1 aal o f e laeealoll Lo ld
=

?'#

explana[tion, see the Appendix. )

S PO, IR

6. A TyricaL. ANTHEM CycCLE

A typical calculational cycle begins with a determination of the time step, which
1s set to respect the smallest Courant limit imposed by the various plasma com-
ponents (usually that of the hottest electrons). In addition, Az 1s allowed to increase
by no more than 20% per cycle. Next, in laser problems, we track in laser light and
determine the location of the critical surface.
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After this, hot electrons are created. If these electrons are treated as particles,
they are introduced at the critical surface and given an appropriate distribution of
velocities. This is usually a drifting Maxwellian ejected toward the laser and emitted
in a 20° cone about the emission direction. If instead the emitted electrons are a
true fluid, then they are produced with zero-drift speed and a temperature
corresponding to experiment. In each case cold clectrons are destroyed at the
emission points, so as to conserve charge. Their energy is added to the emitted hot
electrons. The fluid moments are corrected to take the hot electron creation into
account.

We next compute the matrix coefficients for the elliptic solvers which determine
the B. field. First, the true current correction is added to the old £-field, following
Eq. {53). Generally, we employ the explicit magnetic v x B mode, so next the coef-
ficients for Eq.(23) are constructed. We then go to the ICCG solver package.
extract the B+ solution, and substitute the result into Eqg. (21} (with (¥} ={m)}}
to establish £V and E'™+!'. Except in special tests, #o trerative correction is per-
formed; the true current correction suffices, so the plasma coordinates are advanced
once per time step in these fields.

If we should choose to iterate, we must subcycle through the process of
calculating the fields and then advancing the plasma from its level-(s) coordinates,
improving the fields and then advancing the coordinates again from level-{m). etc.
Finally, the true current correction is added at the beginning of the next cycle for
further improvement.

Update of the particles and true fluids follows the Section 4 guidelines. The com-
ponent cell-wall velocities for the Lagrangian part of the true fluid hydrodynamics
are calculated. Then, the coordinates of any particles are updated, and the various
moments are accumulated. Finally, the advection phase of hydrodynamics is com-
pleted for each true fluid component.

The cycle is completed with the generation of printed and graphical output.

7. THE ELECTROSTATIC LiMIT

Electrostatic solutions, for which the effects of electromagnetic waves are
neglected, can generally provide a useful subspace for simplified test simulations.
For the calculation of such electrostatic solutions, one might be tempted simply to
set B to zero in Egs. (4) and (19), while suppressing Eq. (2). This is acceptable in
one-dimension [137], but fails in two, as evidenced by the fact that in steep-gradient
laser-driven problems the calculated electrostatic potential ¢ grows to many
multiples of kT, in just a few cycles.

A successful alternative approach is to take the curl of Eq. (20) for the Faraday’s
law B-field update, while setting ¢ in Eq. (22a) (and in the v, x B¢ term of
Eq. (20)) to a very large value—to say, 10° times the physical speed of light. This
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forces VXE(m l)—>0, pr()ducing the irrotational electrostatic solution. TllU.S, one
obtains

E" —47 3 ¢, J" At+c AtV x B’
V x — =0, (32)
(1 + w5 Ar7)
which rearranges to
B = —c Ai{VxEg}. (56a)
with
/ a B ,
()L ()= (56b)
ox ox cy ay i

As in the case of Eqs. (23), this system is readily solved with the I[CCG package for
B.. The substitution of B’ for B/ *" in Eq. (20) (with the v, x B term suppressed)
then provides the electrostatic E-field.

One can take the view that for irrotational results, B’ constitutes a virtual B-field,
the curl of which is needed to cancel out the rotational component of ¥ ¢,j"+!" in
Eq. (4). If ¢ is made uniformly large (say. 10° times physical ¢ in the V x B’ term, as
well), the numerical B'-field values will be negligible, while ¢ A V x B” will continue
to balance and cancel the rotational component. Thus, in practice, we calculate
electrostatic solutions by simply setting ¢ to large values in Egs. (20). Special coding
for electrostatic tests is thereby avoided. A 10%-fold ¢ increase has been employed to
avoid computational round-off errors that might occur at higher multiplications.

Clearly the function ¢B’ At plays a role very similar to that played by A" in
Eq. (49). In fact, our experience with B lead to our use of A" for a transverse
addition to the usual longitudinal field correction. Note, incidentally, that for quasi-
neutral electrostatic solutions the simple longitudinal correction of Eq. (44) suffices.
The steep-gradient difficulties requiring more subtle corrections are related to the
miscalculation of the B-field, an irrelevancy in the electrostatic limit.

8. ALTERNATE ALGORITHMS

A. The Vector Potential Moment Method

Brackbill and Forslund [16, 17] and later Wallace er ol. [ 18] (BFW) use vector
and scalar potentials in their “moment method™ solution for the implicit fields.
Generally, therefore, they solve for all the field components rather than just, say,
B.. E_. and E,. But also they leave the pressure tensor implicit [ 167 or extrapolate
the current components while retaining implicit dynamical elements of the pressure
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tensor [17. 187. In each case the currents depend on the fields through a differential
relation, ¢.g..

V=1 VTG —iPG R ﬁ{
I =l LGS =10/ 1

e, [EV+E%xQ, + (2, ET Q] <)

2 (1+Q2) ’ T
in [17. 18], rather than algebraically, as with Eq. (7). Here, j, is the accumutated
component flux following particle extrapolation. Consequently, their fluxes cennot
be expressed solely as local functions of the E-field. nor can they rearrange their
results to the equivalent of Egs.(10) or (14). BFW therefore turn to giobal
iteration [63-65] of the Maxwell-moment equation system. This implies a
significantly slower, and possibly less robust solution process that is possible with
vectorized elliptic solvers.

As a second major difference from our approach, the BFW procedure recom-
mends only that the electrostatic potential, ¢, should be corrected to agree with
the true charge accumulated in cells at the end of the previous cycle. This s
equivalent to making only the longitudinal E-field correction, Eq. (44), and must be
expected to present computations difficulties in steep density gradient regions.

B. The Direct Method

In their “direct method™ approach Langdon and Barnes {207]. and Hewett and
Langdon (66) extrapolate the particles and accumulate a current . Then a correc-
tive current ¢ due to the effects of motion in the electric and magnetic ficlds 15
constructed. They determine. as a consequence of the extrapolation procedure
inherent in the direct method [ 15, 207, that the total implicit current for use in
Ampere’s law is of the form

AnY g  Ar=dn g At+ g EV U e AtV X CEVTY, (58)

in which ¥ and { are matrices which strongly couple the field components. since
they include the rotational effects of the B-fields on the particle orbits. This
approach introduces current dependencies on the spatial derivatives of E through
the ¢ term, so again solution via simple elliptic solvers is unavailable.

Combining Egs. (58) and (4), one obtains

E(m+1):E(m)_4n,jrAr__Z E(m+ll
+CAIVX[B(:7z+li+;,]E1m+l)]' 45;)}

Langdon and Barnes [20] noted that the divergence of Eq.(59) {which is
equivalent to Eq. (41)) implies predicted densities #\”* !’ that can differ from the
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true densities 7{"* " achieved when the plasma coordinates are advanced. To
correct this error, they considered making the longitudinal correction of Eq. (44),
except that instead of adding —Vég"™ to E" they would add the equivalent,
Vég'™/dn AL, to #'.

In addition, Langdon and Barnes considered an alternate. purely longitudinal
correction to the advanced E-field. That is, they suggested the change

E"”*”HE"'”“’—V(//, (60)
which converts Eq. (59) to

EV D =E" 4 (14 1) Vi ~dn g At— 3 E Vg c AtV x [ ] (61)

To correct the density errors they then required that  satisfy

Vo(l4+7) V= -V268" =4nY q,a" —V-E™, (62)

in lieu of using Eqs. (43) and (44). Hewett and Langdon (66) subsequently reported
that the earlier longitudinal correction lead to difficulties in steep gradient regions
and implied corrective currents in the vacuum. Since these difficulties were
eliminated with the newer Eq. (62) implicit correction, it was recommended.

Equation (62) can be solved directly for ¢ by means of elliptic solvers
[34, 35, 37, 38]. But a solution can also be obtained by starting with

(L+7) V= -V 3"+ Vx4, (63)
since ¥V x 4 is invisible to the divergence operator in Eq. (62). Then,
Vy=[14+y]""(=Vp'™+Vxi). (64)
An equation for 4 is obtained by requiring that Vi is, indeed. irrotational, ie.,
Vx {[1+x] ' (=VIp"™+Vxi)l =0 (65)

For explicit magnetic differencing y = o, Ar*T with I the identity diagonal matrix.
Thus, Eq. (64) reduces to Eq. (49). With our alternate global implicit differencing
the matrix includes a rotation due to the B-field [20. 67] leading to a more com-
plex, but solvable equation for a single component 4= A(x, j}e.. Once A has been
obtained, Eq. (64) gives Vi for Eq. (60).

It is, therefore, clear that the direct implicit longitudinal correction is equivalent
to our A—functlon correction. Both corrections remove charge separation errors

rndar tha arhitrarnr anmateniant that vun D RAIA Alhaciaans ama Alvnneler o Jeimnd i a e
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9. HyBRID MODELING

Classical hybrid particle simulation models [63-66] treat the ions as particies
and the electrons as a single fluid, lacking all or part [70] of its inertia. These
models determine the electron density from the ion data through the quasi-neutral
assumption, n, > Zn,, or the related Gauss’s law

i
=7Zn,————V-E,
, A, Ine

o
[¢a)

pe—

so no detailed treatment of the electron dynamics is demanded, except, perhaps, for
a concomitant update of an electron energy equation. The classical hybrid schemes
have run into difficulties in the modeling of plasmas with neighboring vacuum
regions [ 717, since their implementation relies on the field expressions {(when
resistivity is low)

- YxB_ 1 gp (67a)
¢ en,
with
V4 VxB
v = ny, cVx s (67b)
n, 4men,

which are singular as n, — 0. The invocation of an ~“ad hoc” density floor can suffice
in one dimension to allow good calculations for the plasma body, but in the low
density surroundings and for two-dimensional plasmas in vacua the resuits are
unreliabie.

The single electron fluid in the classical hybrid models corresponds best to the
auxiliary fluid in our implicit hybrid scheme, since it is used chiefly to compute the
fields. Thus, Eq. (67a) goes over to Eq. (20) of our implicit scheme. In conjunction
with the auxiliary fluid equation of the moment method, we retain the full Maxweil
displacement term, so a “1” appears in concert with w7, A#* (in place of #,} in the
denominator of Eq. (20), and the singularity is removed. Also, the full set of alec-
tron inertial terms is retained. Moreover, instead of determining the velocities
inferentially, as with Eq. (67b), we update them directly with the aid of either
Eq. (7) or {19). Our velocities remain, therefore, finite and well behaved in low den-
sity regions.

Our use of an implicit E-field guarantees that the numerical instabilities related
to plasma waves are suppressed, allowing Ar>» w, ', as in the classicai hybrid
models. However, the simple differencing used for the inertial terms in the auxiliary
equations of the moment method in no way guarantees positivity of the densities
predicted along with the field solution. For this reason we have chosen to retain the
additional true electron fluid, differenced in a spatially stable manner—according to
donor-celi or Van Leer—to ensure positivity and long term stability. Alternatively,
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one might attempt to include diffusive spatial differencing directly in the auxiliary
equations, as recently suggested in a direct method, FCT framework by
Denavit [14]. This would lead to iteration of the resultant auxiliary-direct
equations for more precise fields, in lieu of the iterative corrections described in the
Appendix. v

Our present use of an explicit scalar pressure in both the auxiliary and true fluids
acts to limit our hybrid time step to an electron Courant value, rather than to the
ion Courant value enjoyed by the classical hybrid models. We speculate that the use
of an implicit scalar pressure in both fluids should permit an increase of the implicit
time step up to a value based on the electron drift speed, rather than one based on
its thermal speed. For those instances when the electrons track the ions, this should
result in a substantial permitted increase in A¢, to values equivalent to the classical
hybrid limit. Accordingly, motion of the true fluid can be calculated by established
implicit hydrodynamic techniques [72]—with the electrons updated in implicit
fields calculated approximately with implicit pressures but simple spatial differen-
cing. This is philosophically different than reaching for an increased time step by
way of extrapolation [17, 20], since extrapolation essentially moves material in
consistency with the old pressure gradients, while the use of implicit scalar pressures
moves matter in anticipation of the advanced gradients. Significant motion of the
electron fluid through E-fields that can seriously change its dynamics is, therefore,
controlled self-consistently in the proposed approach—but not so with
extrapolation. The field equations will be more difficult to solve with implicit
pressures, but an iteration of the Section 3 procedures, using P+ ~ glm+ e Tom
and Eq. (66), may prove to be workable and sufficient in two dimensions, as it has
in more limited one-dimensional investigations [ 3]. Note that if the true fluid were
represented as particles (in such a large -Ar full-particle scheme) the corresponding
procedure would demand subcycling of the particles along their orbits [73, 74, 3]
to assure an adequate sampling of the self-consistent fields.

10. DEMONSTRATIVE CALCULATIONS

Here we present results from a set of laser illumination runs, performed with
ANTHEM for the purpose of demonstrating the relative merits of explicit magnetic
differencing compared to globally implicit v x B differencing and the comparative
virtues of the various field correction procedures discussed. Related demonstration
runs in which classical collisions are active are available in Ref. [26].

Our test runs were performed with the default parameters described in Sections 3
and 4, except as otherwise indicated. Thus, the E-field is fully forward differenced,
and v\ x B™ is centered implicitly in the velocity and current updates. However,
in the elliptic equations for B, we allow the magnetic force term to be explicit for
most of these tests. The runs are all very short, typically requiring 65 cycles perfor-
med in 2 min of CRAY-XMP time. Energy is conserved to better than 5% in the
course of these runs; conservation will improve when time centering of the implicit
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terms in the code is more complete, as suggested in Section 3a. In each case the field
is computed without iteration; there is a single advance of each fluid and/or particle
component each time step.

Figures 2 to 7 show results for the CO, 10.6 ym illumination of fully ionized
(7 =2.6) slabs of CH, plastic. The light enters from the right and runs paraliel to
the x axis along the grid lines until it reaches the critical surface at 10*° cm ~* elec-
tron density. We deposit 27 % of an applied intensity of 3 x 10™ W/cm? in the cell
just below critical by assumed resonance absorption. The spot is 80 um in diameter
and at the center of a 1000 um slab. The background electron and ion temperatures
are initially set at 100 ¢V. The laser generated hot electrons are initially emitted at
20 keV, but hydrodynamic expansion of the hot electron fluid rapidly cools these
clectrons to 10 keV temperatures. We use a 50 by 50 mesh with Ax =Ay =20 um.
The time step is variable, but typically Ar=0.12 ps. At the critical density the
plasma frequency w,=18x10"s"" and therefore w;Ar>=431. The slab is
initialized with an exponential-ramp density profile dropping from 1.3 x 0% cm ~°
electron density down to of 10" cm 3, which is taken as the floor density #.,,.
Fluid velocities are set to zero in regions for which # <n,,.. Generally, we show the
calculated plasma configuration after 5.4 ps of plasma evolution, representing 5C
cycles of computation and about 2 min of CRAY-XMP time.

Figure 2 gives results obtained with explicit magnetic differencing and use of the
true current correction. Frame (a) displays two-dimensional hot electron density
contours which can be calibrated by reference 1o the one-dimensional density

prafiloegiven. bolouin frame (J) Thece profilac are recorded olono o lina ar
v =>500 ym. The single fiducial line in frames (a) and {b) represents the calculated
deposition point for las.* energy. The double fiducials mark the end of the slab at
#... Clearly, hot electrons have propagated more than 300 ym during the
illumination period.

Frame (b} shows the self-consistent B-field generated by thermo-electric influen-
ces [39,40,75]. Frame (e) taken at the y=400 um position indicates a near
maximum field of 250 kG. Frames (c) and (f) give the electrostatic potential ¢ in
contours and profile. There i1s a small dip in ¢ in the vacuum, and ¢ goes to 2
maximum of about 20 keV (the initial hot electron temperature) near criticai. The
additional curve in frame (f) is the containing electric field E_ in relative units.
Clearly, the field acts to hold the hot electrons into quasi-neutral agreement with
the ions.

Figure 3 gives results achieved when the same system is modeled with the more
complex globally implicit vx B differencing. The results are identical in major
respects to those of Fig. 2. Minor differences to be noted are slightly broader B-field
contours for from the spot, and slight modifications of ¢ in the vacuum and at the
outer reaches of the B-field contours. From the essential similarities, we conclude
that the simpler explicit magnetic differencing is, in fact, an acceptable procedure.

Figure 4 recalculates the Fig. 2 system with explicit magnetic differencing but no
longitudinal field correction. The chief deviation from the preceding results is the
leakage of hot electrons out ahead of the ions into the initial vacuum region.
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F1G. 2. A test of the utility of explicit magnetic differencing and the true current corrections. Results
are for a plastic slab at 5.4 ps under steady illumination by 3 x 10" W/cm? of 10.6 um light. Details are
discussed frame-by-frame 1n the Section 10 text.

Inspection also shows that the E-field is weaker near the void and further displaced
into the void, consistent with the charge separation. Also, the B-field contours are
broader, and the up-down, y-directed drop-off of ¢ is more pronounced inside the
slab.

Next, Fig. 5 shows the changed results when just the longitudinal field correction,
Eq. (44), is imposed to halt the charge separation. The hot electron density con-
tours and profile appear to evolve as earlier, but the B-field and potential are
markedly different. The B-field is off scale at peak beyond 500 kG, and much more
broadly distributed in the vacuum. Relatedly, ¢ achieves a value beyond 3«7, in
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FiG. 3. The same laser and target conditions as for Fig. 2. but with global mplicit v x B differencing
The similarity in results testifies to the interchangeability of the two differencing schemes.

front of the laser spot, and reverses sign within the slab. When the same calculation
is rerun with Ax. 4y, and 4z all 10 times smaller (so that o » A reduces to about 2j
these nonphysical effects disappear, and the results look again like those of Fig. 2
with the true current correction. It was this class of difficulties for large time steps
and steep gradients that drove us to develop the V x / correction and the alternate
true current correction.

Figure 6 provides results obtained by using both the longitudinal correction and
the 4 function. Again, our findings are essentially similar to the results with the irue
current correction and also with the uncorrected output—except that the charge
separation error near the vacuum interface is eliminated. Frame (e) shows a B-ficld



464 RODNEY J. MASON

n
1000 T
(a) b
Y{um) ) _
500 [@ ]
L S _
0.0 | H
0.0 500 1000 1000
B8 B
1000 T .5 I T
© 05T (o) |
Y{um) - ~  B(MG)- /\
500 |~ . 0.0
0.0 | L 05 | 1
0.0 500 1000 0.0 500 1000
¢ ¢
1000 T T 50 T f T
{c) . (1) b
Y(um) | — 74 P (ke - TV —
] Ex
-~
500 (1 = 0.0
— ] i
- ~— .
0.0 1 ] ~50 1 | |
0.0 500 1000 0.0 500 1000
X(pm) X{pm)

F1G. 4. The Fig. 2 run, but with #no field correction. Frame (d) shows the hot electrons leaking mto
the vacuum—in violation of quasi-neutrahty.

profile slightly sharper than with the other corrections and potentials closer to the
uncorrected potentials inside the slab. The greater simplicity in accumulating
currents with the 1 function might tend to encourage its use, although the current
correction is more fundamental— in its relation to a convergent iterative process
for acquiring the exact fields. The Section 8 direct implicit longitudinal correction of
Langdon, Barnes, and Hewett [ 20, 66] should yield results similar to those with the
A function.

Finally, Fig. 7 presents output obtained when the hot electrons are treated as
PIC particles, while the background electrons and ions remain fluids. All but fames
(d) and (g) are for 1 =5.8 ps. These and frame (a) show the time development of the
hot electron density profiles as well as the positions of the hot electron PIC par-
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Fi, 5. Nonphysical results for the B-field and ¢ are obtained when just the longitudinal correction s
applhed to the E-field. B-field excessively fills the vacuum, and ¢ rises to many «T,. Here, o? A~ > 400
at crinical, so the impheit character of the calculation is strong. The errors vamsh for smaller systems,
and As such that w, Ar< 2.

ticles. Ten particles are emitted each cycle, so 5000 are present at the end of the run
and in frame (a). The particles are produced in a right-drifting maxwellian dis-
tribution in a 20° cone about the direction towards the depositing laser. Thus. upon
reflection off the sheath neighboring the vacuum, the electrons enter the slab in a
more focussed beam than seen in the fluid simulations. The resultant B-field of
frames {b) and (e} shows broader contours in the x direction and a weaker intensity
at =400 ym. The ¢ contours are much more irregular, as a consequence of the
particle statistics, and the maximum potential is nearly three times the fluidic value,
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FIG 6. Results obtained using both the longitudinal, V d¢. correction and the Vx4 correction.
Agreement with the true current correction results of Fig. 2 1s good.

since the E-field must be large enough to reflect electrons from the distribution tail
at energics exceeding xT,. Frame (h) gives a u-x phase plot showing particles
reflected off the sheath. Here, the solid curve is the mean hot electron velocity. Elec-
trons are specularly reflected off the left boundary. Last, frame (i) shows a
smoothed profile of the hot electron density, along with the cold n, and ion #, den-
sity profiles. The essential point here is that the explicit magnetic differencing and
true current corrections are proven effective in hybrid particle simulation.
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11. CONCLUSIONS

We have described a robust and simple two-dimensional algorithm, in part
embodied in the ANTHEM code, for the implicit simulation of plasmas. It com-
pares favorably with earlier approaches in terms of facility, efficiency, and
applicability to problems manifesting steep density gradients. The implicit field
approach can be used with either the particle or fluid modeling of the plasma com-
ponents, so that widespread full-particle and hybrid applications should be possible.

APPENDIX A: §j/"*!" ITERATIONS

This development expands on the convergence analysis of Ref [3, Sec-
tion [1.B.4], which, in turn, was derived from the related treatment by Langdon et
al. [15]. Due to differences between the true and predicted currents, one will
generally find that, indeed, following the plasma advance

(A)E(mi»l)sé (\IE(IN) _47.[ 5‘ (] (3)j(m+ I)+ ¢ At V x (.\)B(anr 1) (Al )
Lok x z ‘ *

That is, equality will prevail using the predicted currents (as required by the Eq. (4)

solution), but not using the true currents. Consequently, we seek to iterate the

entire system of fields and plasma, such that in the next (s + 1) iterate, equality with

the true currents is more closely achieved. We, therefore, seek to establish

(.s+I)E(m+lb:E|m|_4an |\+1|j(m+l|+CA[ VX (> + I)B(erl) (A7)
k4 % : =

To make this improvement, we define iterative variations

{s + llQE(m+ )~ s+ l)E(m+ 1y (5)E|rn+ 1) (A3a)
4 - ]
13+l)9B(m+l): (,\+1yBlm+1)_ (s)B(m+l) (A3b)
- K
|.\+1ig,j|m+ 1= (+H1m+ 1) l_\)j(erI) (A3C)
o x x
and
(s + l)gzj(m+l)E s+ Dyum+1) _ (&)j(erl) (A3d)
x* x x *

Then, from Egs. (19) for iteration level-(s+ 1) we derive

()}

“Jrl’,@ja:(A'H)@ji:nl—qul“Jr”,@E (A4a)
m

x

under the condition that the pressures and vx B terms are cvaluated at time level-
(m). From the summation of these component equations we construct

4r Z qa(A+ l)gj ~ w;O Al2(3+l)§2,E' (A4b)
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The approximate equal signs remind us that variations of the true fluxes are only
approximately give by the variations of the predicted fluxes, as determined from ths
moment equations.

These expressions permit us to convert Eq. (A2) to

IR = —47t2q,“’]‘,’”+” A — [((:)E(m+i)_E<mi)_C AtV x (s)B(m+l)] (A5

= —4n Yy g, At {A5b)
:“ +(U;’,o AZZ) l“*”;?’E“"*'”—C Al X (.\+1))(!Blm+1l. {A5C)

‘(j'll'” - I

3

Here, “'R is the error residual at iteration level-(s), ")jim = hm+ o G
represents the difference between true fluxes and the predicted fluxes, and
4y g, jm+ 1 is given by Eq. (52). Equation (A5) can be solved for the £-field
variations, yielding

_4nzq1ménm+l) A[("')+CAIV x (A+iigB1’77+l)
(1 4+ w3, Ar?) ‘

20

<\+1)9E1m+1): 11’*‘\6}

Faraday’s law, Eq.(2), relates the B- and E-field variations, giving
YB= —c At VxZE. We use this to eliminate ZE after taking the curl of Eqg. (Aé).
Then. to determine the “*"Z B+ variations corresponding to the latest
9 values, we solve

A s+ Ligp pion+ 1y Y/ A+ Ui pom + 1)\
|\+1)932m+1)_7(_ Y ‘36__.;13:—_)_;’1\%( & B! ):‘\-)Q{VS; !
Ox\ ox A Sy
{AT7a)
with
_47.[ x\.\)é'(nz+l)A[|mv
MGBT = —¢c AtV x 24q ,"1 5 . {ATD)
) (I + o5 Ar) -

As earlier. the A} factors in Eq. (A7a) are computed from Eq. (22¢) and based on
the wall averaged densities #, and n,.

The solution for “*"ZB"*1D is again, readily supplied by our ICCG
solver [34.35]. With this obtained, Eq.(A6) renders ©*UQE™+" We can.
therefore, proceed to construct

m+1)E(m+11: (3)E("1+1)+ (A+£iQE{m+l; 6483_5
and

(_\+1)B1m+1)_ U)B(m+1|+ {.\+IIQB('71+1! {A8H}
= g . . M

Finally, we advance the plasma coordinates in these new fields from their time

581 71 2-16
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level-(m) determinations to improved time level-(m + 1) values, ©* " x{"+1 and
s+ Dyim+1 " while accumulating “*"n¢+Y and “*Yjm+D_to complete the
iterative cycle. This overall procedure can, of course, be repeated in pursuit of still
greater improvement.

Comparing Egs. (53) to Eq. (A6), we observe that with the true current correc-
tion procedure we essentially defer calculation of the effects of the current
deviations until the next cycle. By skipping the iterative sequence, we avoid costly
ICCG solutions for ¥ "2 B+ 1 and multiple updates of the plasma coordinates
each time step. Simulation results with this simplification have, in practice, proven
acceptable.

Similarly, comparing Eqs. (49) and (A7b) we see that the A-function correction,
indeed, corresponds to very special transverse current deviations, such that no
B-field variations are induced.

To check the convergence of these iterations we can examine the ratio of
successive residuals. From Eqs. (ASb) and (52) one can determine that

(s+1>R=(A)R__47.[Zqx[lwl)gn’vwl)_(¢+l)g,j;m+1;] Af. (A9)

This can be rearranged to

(3+1)R~ (wéo AZZ) (3+1j9E1m+1)__4n_zqx(A+l)9j;,n+1)AI
la)R (1 +(D§0 Al‘z) (:+|)9E[m+1j+c2 A2‘2VXVX (3+1)92,E(m+1i’

(A10)

by using Eq.(AS5c) for “'R, and the differential of Eg.(52) to express
dr Y T Dgjim+ D Ar in terms of @ T VGEY TV and “ T YgBY™ 1 and by using the
differential of Faraday’s law to eliminate ZB""*" from “'R.

Then for fields with a sample spatial dependence of ¢** the denominator of
Eq. (A10) is (1 + w2y Ar* +k*c? A?) ZE+ 1. Clearly, the next residual, ®* "R, is
zero, if, in fact, equality applies in Eq. (A4b). Also, convergence is faster for shorter
wavelength (larger k) disturbances. That is, if the true current’s dependence on ZE
is the same as the dependence of the auxiliary fluid current, then the iterative
corrections will give the exact field and plasma solution after a single pass (at level
s=1). Generally, this will not be the case. For example, while the auxiliary fluids
will obey Eq. (49a), the x component of any true hybrid fluid elements is given by
Egs. (36a) and (36b). Only in the pure second-order case (#=0)—with negligible
Lagrangian phase density changes—are the densities contributing to the true and
auxiliary currents the same. Similarly, any particles crossing a cell-wall boundary,
and contributing to the currents there, will experience the E-field from the four
nearest cell-wall centers, while (for B=0) the auxiliary fluid currents sense only a
local cell-wall centered field. Complexities of the field-to-particle area weighting and
the particle-to-current accumulation procedures go further to guaranteec some
inequality in Eq. (A4b). Reference [3] discusses such details in a one-dimensional
context. Borrowing from these one-dimensional results, we can conclude that in
spatially near-uniform systems convergence will be faster, since the relatively larger
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stencil for the particle-felt fields and Van Leer hydrodynamics will matter less.
Again, experience has shown that simple deferral of a single iterative correction to
the next cycle—the true current procedure—is sufficient for acceptable simulation
results.
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