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A new, robust algorithm IS presented for the implictt calculation of the electromagnetic 
fields used in the full-particle and hybrid modeling of 2D simulation plasmas. The algorithm 

allows for calculations at time steps Jr well m excess of the plasma period and for mesh scales 
3s far exceedmg the Debye length-with electron inertial terms retamed. The unphcit fields 

suppress the numerical instability associated with plasma waves. Still, the At remam con- 

strained by an electron Courant hmit. The algorithm is consrderably sampler than earlier 
implicit schemes, and more complete in its treatment of field errors ln its present form the 
algorithm is hmtted to plasmas moving and accelerating in a plane across a smg/e component 

of magnetic held. An extension to include all the field components is suggested, however. In 
accordance wtth the imp/t& nronrenr method, estimated electrtc and magnettc fields are 

obtained by solving Maxwell’s equations self-consistently for a set of imphat sources, 
estimated with the aid of an auxtliary set of lower flmd moment equattons (for component 

fluxes and density). The fluid pressure terms are treated explicrtly, and the spatial differencing 

of the auxiliary moments is centered to facilitate the solution of the resultant held equations 
Solution for the single magnetic field component is obtained by one elliptic equation mver- 

sion, readily managed by a vectorized solver package. A subsequent irrotational old E-heid 
correction is found to be crucial for the mamtainence of anttcipated quasi-neutrahty. A con- 
comitant rotational correction is needed for physical solutions m steep density gradienr 

problems. We show that both corrections can be obtained simultaneously by referencing the 

deviations between the true currents flowmg, and the currents predicted to flow in the plasma 
at the end of a cycle. The current correction is shown to be equivalent to the first (and usually 

sufficient) step of an Iterative procedure leadmg to an exact solution for the fields In addition, 
we demonstrate that electrostattc solutions can be obtained from the impltcit algorithm by 
setting the speed of light to very large multtples of Its physical value. Compartsons are mace 

with earlier moment and direct method approaches, and the scheme is related to previous 
classical hybrid models. Demonstrattve applications are discl;ssed. 

1. INTRODUCTION 

In particle-in-cell (PIC) plasma simulation [ 1, 21 a large number of particles. 
each representing many electrons or ions, are advanced in accordance with New- 
ton’s laws through electromagnetic fields determined from Maxwell’s equations. In 
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related hybrid schemes [3] a portion of the plasma electrons or ions are treated as 
fluids. The older full-particle explicit plasma simulation models [4] were limited to 
time steps less than a plasma period, i.e., o, At < 2. With the invention of implicit 
plasma simulation schemes, this restraint was removed, first in one dimen- 
sion [3, 5-151, and then in two-dimensions [l&20]--offering great promise for 
diverse applications. Yet, to date, 2D usage [21-241 has not been widespread, due, 
in part, to the complexity and sensitivity of the algorithms first proposed. This has 
encouraged the development of the new algorithm detailed here, which appears to 
be both simpler and more robust than the earlier approaches. The new algorithm is 
embodied in the 2D implicit hybrid simulation code ANTHEM. 

Presently, ANTHEM is limited to plasmas moving in a plane through, say, E-, 
and EJ electric fields, and across a single mutually perpendicular B_ component of 
magnetic field. An extension of the algorithm to include all the remaining field com- 
ponents is, however, discussed. We use the moment method [9, 12, 161, solving 
Maxwell’s equations for time-advanced sources predicted with a set of auxiliary 
fluid moment equations. With explicit pressures employed in these auxiliary 
equations, the predicted currents become simple algebraic functions of the Z~~al 
E-fields. In turn, through Ampere’s law these E-lields become algebraic functions of 
V x B. Substitution of these E expressions into Faraday’s law leads, for the plasma 
flows considered, to a single elliptic equation for B,. This is readily inverted with 
vectorized solver packages. Earlier approaches differ by treating either the static 
and/or dynamic pressure implicitly and by working iteratively with the scalar and 
vector electromagnetic potentials [16], or by using the direct implicit method. 
which leads to currents dependent on spatial derivatives of the E-field com- 
ponents [20]. Both prescriptions generate a much more complex set of field 
equations than those encountered in ANTHEM. A current-related rule is used in 
the new algorithm for the iterative correction of the fields to their exact values. The 
earlier methods have relied on only ad hoc corrections to the irrotational sub-por- 
tions of the E-fields. ANTHEM allows for the hybrid fluid modeling of selected 
components of the plasma. The former treatments have been confined to a PIC 
representation for all the electrons and ions. 

We review the general features of the implicit moment method in the next section. 
Then, two modes of the ANTHEM field algorithm are spelled out in Section 3 (a 
preliminary outline has been given elsewhere [25-271) and a full-field extension of 
the algorithm is suggested. Section 4 shows how the plasma coordinates are advan- 
ced in the implicit fields derived from the new algorithm. Section 5 discusses 
approximate correction of the fields. An Appendix discusses more complete iterative 
corrections. In Section 6 we summarize the operations performed in a typical 
ANTHEM cycle. The remaining sections provide additional background material. 
In Section 7 we show that electrostatic solutions can be obtained by artificially 
setting the speed of light to very large values. Section 8 compares our algorithm to 
approaches taken by other workers. Next, Section 9 discusses the existing hybrid 
implementation of the algorithm and speculates on future possibilities. The remain- 
ing Sections provide demonstrative applications, and our conclusions. 
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2. THE IMPLICIT MOMENT METHOD 

Linear analysis shows [9, 111 that simulation can avoid the numerical 
instabilities related to the plasma waves, if the plasma coordinates are updated in 
time-uduanced electric fields. At first, it might seem that knowledge of these fields 
would require the inversion of a very large matrix corresponding to the field and 
plasma equations. With 100 particles/cell this could amount to some 500 
equations/cell, for example, so that for a 50 x 50 mesh one would need to invert 
more than 10’ equations (which would, in turn, lead to the inversion of IO6 x 10” 
size matrices!). This inversion problem is, however, markedly reduced in the 
moment method--simply by solving Maxwell’s equations jointly with a set of 
auxiliary fluid equations (at least a set of momentum equations. possibly also a 
continuity equation). This procedure produces an implicitly predicted set of fields 
and sources to Maxwell’s equations. The particles and any true fluids are then 
advanced in these predicted fields. Deviations between the predicted sources (i.e.. 
currents) for Maxwell’s equations, and those actually achieved are collected. These 
are used as sources through the moment equations for subsequent improvements to 
the fields. prior to a an update of the plasma coordinates to improved values, giving 
improved sources. This whole process can be iterated repeatedly, although a single 
correction-usually delayed to the beginning of the next cycle--has been found. in 
general. to suffice. 

When the plasma is modeled at least partially with fluid components, these are 
advanced m time by a set of “true fluid equations,” Analytically: the true fluid 
equations are identical in their lower moments to the auxiliary moment equations 
used for the fields. But in ANTHEM the true equations extend beyond continuity 
and momentum to include an energy (or entropy) equation, and a prescription for 
the heat flux. Numerically, the auxiliary lower moments, and the true fluid lower 
moments differ in ANTHEM because centered spatial differencing is general]? used 
in the auxiliary equations, while Van Leer [28] spatial differencing is employed for 
the true fluids. An improved spatial treatment is needed for the true hydrodynam:c 
advance to minimize numerical diffusion. However. it is skipped in the auxiiiary 
equations governing fields tG simplify, and to avoid mandatory iteration. The Van 
Leer differencing requires prior knowledge of the fluid velocities, which are known, 
only after the field and Maxwell sources have been derived, i.e., after the Eefd 
equations have been solved. 

One is, of course. free to choose a degree of implicitness that suffices for the 
problems of interest--as a compromise between the utility and simplicity of rhe 
numerical scheme which results. When the sources to Maxwell’s equations are left 
explicit, but the 0 x B of Ampere’s law, and the ‘F x E of Faraday’s law are made 
implicit, one can use a time step At exceeding the Courant condition based on the 
speed of light, in performing electromagnetic simulations. Godfrey [29] showed this 
some years ago. Accordingly, uncoupled elliptic (Poisson) equations must be solved 
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separately for the B-field components, and the simplest option to use a leap-frog 
update of the fields [30] is lost. 

Beyond this, to avoid the time step limitation from plasma oscillations which 
restrains calculations to o, At < 2, one must make the E-field implicit in the dif- 
ferenced auxiliary momentum (i.e., current) equations [9, 133. The elliptic field 
equations become inhomogeneous by this addition, and a symmetric matrix 
equation solver is needed for their inversion. Significant utility may be achieved for 
particle schemes at this stage, since with w, At 9 1 the use of time steps 
approaching the electron Courant limit, i.e., 0.1 xv, At/Ax < 1.0 with oP At > 1, 
supresses the finite grid instability [ 16, 171. (One reason for the development of a 
fluid capability in ANTHEM is that in very cold regions, where this Courant 
requirement cannot be satisfied, the use of fluid electrons can bypass this 
instability.) 

Next, should one desire to describe plasmas in intense magnetic fields with the 
time step exceeding the electron cyclotron time, i.e., o, At > 1, then the velocity 
must be implicit in the v x B terms of the component momentum equations which 
yield the new currents. With velocity implicit wherever v x B appears, the resultant 
elliptic equations are, in general, strongly coupled and nonsymmetric with stencils 
exceeding 9-points. But, for the simple case of motion, acceleration and E-fields in a 
plane perpendicular to a single component of B, the system can be reduced to a 
single nonsymmetric 9-point elliptic equation for, say, B,. This is the first 
operational mode available with ANTHEM. Less obviously, we have found that if v 
is left explicit in the elliptic equations for B, but implicit in the current update, the 
resultant equations are largely decoupled with symmetric matrices, and 
stable-even when 0,. At $ 1. This second mode is available in ANTHEM, but still 
under evaluation, due to its unusual structure. 

Finally, for the ability to use the implicit differencing scheme at time steps 
exceeding the Courant limit, i.e., At > Ax,/a,, where a, is thermal speed of the fastest 
electrons, one must employ an implicit pressure [9, 161 or extrapolate the 
moment [17] equations. Freedom from an electron Courant limit can be useful, if 
variable cell sizes are desired-with very tine cells placed in inactive regions of a 
problem, where accuracy may not be too crucial. However, the use of either implicit 
pressure or extrapolation widely expands the stencil for the field solution 
matrix-presenting a special challange for inversion. For simplicity, therefore, we 
bypass extrapolation and retain explicit pressures in ANTHEM. 

We now detail the field solution procedures employed. 

3. THE FIELD PREDICTION 

For implicit fields we require a time-advanced current source in Ampere’s law 

dE 
at= -4rc~q,j,+cVxB, 
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which is solved with Faraday’s law 

2B 
-z= 

-cVxE (2) 

to obtain the new E- and B-fields. Here and subsequently, x is over the com- 
ponents 12. 

The Jo E U,V, terms in Eq. (1) are component fluxes, with I?, the component 
sity and v, its velocity. The charges q,, and qc are -e for, say, hot and cold electron 
components in a laser-driven transport problem [3], while ql= +Ze for the ions. 
The V B = 0 Maxwell Equation reduces to i?B,/C?z = 0, when only the single di, 
component is allowed. Finally, the accumulated charge will give rise to E-fields 
obeying Gauss’s equation 

VE=4n~q,n,. :3a \ b 

The E-field is related to the scalar electrostatic potential (b by the expression 

Here, A is the magnetic vector potential, satisfying 

B=VxA. 13C) 

The scaiar potential is used principally as a diagnostic in our new algorithm, 
although it features in our Section 5 discussion of field corrections. Brackbill, For- 
slund, and Wallace [ 16-183 hav-e used the vector potentials A as an intermediary in 
obtaining implicit E and B fields. We work with the fields directly. Time integrating 
Eq. (l), we obtain 

Et”‘+ r’ = EC”‘) - 477 c qm j\*J At + CV x Btt) Ar. : s \ r 

We store all physical properties at time level-(n?). Appropriate time averages are 
taken to form optimal centerings [3] at the time levels (*) and (‘). Generally, the 
fully forward values (* j = (t) = (m + I ) give the most stable numerical results, whiIe 
a choice slightly forward of center, e.g. (IN + 05.5 j, gives stable results with 
improved accuracy. Denavit [f3] and Langdon et al. [IS] recommend a diversity 
of alternate centering prescriptions with improved damping characteristics for 
unwanted high frequency disturbances. To simplify the presentation we wih 
generally invoke the fully forward time-centering choice in the discussion that 
follows. 
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Following the moment method, we calculate j * ( ) by time-integrating a set au.uifiar~ 
momentum equations 

djj, 
Ft= 

-!l$+!B(E+5g. 

Here, the pressure tensor P, = P,, f m,~,v~v,. + (P, + P,,,) 6,,, in which 6,, is the 
Kronecker delta, P, z IZ,KT, is the scalar pressure, assuming isotropy of the ran- 
dom part of the component distributions [31], and P,,, is an artificial viscous 
pressure [32]. We have assumed that classical collisions, which would tend to 
equilibrate the various component velocities [7, 3, 10, 25-271, are negligible. An 
artificial pressure is introduced so that the auxiliary equations will better mimic the 
true fluid equations, when fluid components are present. Its presence appears to 
have little significant effect under plasma PIC modeling. 

A. Solution of the Maxwell-Moment System with Globally Implicit v x B 

We begin by making the pressure explicit, and the velocity in the v, x B term 
centered-implicit for the time integration of Eq. (5). Justification will be given in 
Subsection a. Thus, integrating, we obtain 

(6) 

with j(r)!+ 1) _=~~(f~~Jv("~+ I), j(fplJ'E jlnz) _ V. p('n) At/l,? + j'"' x Q, Q E qB("') At/2n?c, and 

ES qAt/m. Operating from the right with the x R, and . R,, we can rearrange 
Eq. (6) to 

[Et’“+ 1) + EC”+ ‘1 xn,+(E”“+“-n,)Q,l 
PI 

with 

which expresses the new component fluxes jr+ ‘) in terms of the time advanced 
E-fields E(“+l). Only the old, level-(m) densities and B-lields appear (through Q) in 
this formulation. Formally, Eq. (7a) can be written 

Xa 
J, a 
'(m+l)=j(m)"+- Ehfl) 

’ 

in which the xX matrix is a component susceptibility. 
Next, the component flux expressions are used with Ampere’s law to relate the 

E-fields to V x B. Substituting Eq. (8) into Eq. (4), we get after some rearrangement 

E’“‘+i’=[I+~]-‘E’““‘+[I+~]-l~AfVxB’”+lJ, (9) 
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in which I is the unit diagonal matrix, x -z x, and E”“)’ = E’m’ - 471 c sXjyJ ar. 
Combining this with Faraday’s law, Eq. (2), one can acquire 

~~~~~+~)=B~‘“)-ci\fVx[I+X]-~E(““+Vx~7Af2~~+~~-’V~B(m+1’. , (EOi 

The solution to Eq. (10) with subsequent substitution into Eq. (9) wouid now 
complete our quest for an implicit field prediction. However, for a generally orren- 
ted B-field the formal inverse matrix [I + x] --I is, perhaps, difficult to evaluate. 
Furthermore, it mixes the B-components in a most complex fashion. and so we seek 
simplification. We substitute Eq. (7a) into Eq. (4). This yields 

employing O& = o&/( 1 + Qf) and o& = 4nq~nJnz.. With the additional definitions 
O$ = C w;,, D = (1 + O$,), E (m)” = E’““/D, Q, E UQ% (U defining a unit vector 
along a), j? -x Q,G& At2, E EC sZzW& At’ and y 5 c At/D, we convert Eq. (11) to 

E Inlcl)=E(m,‘-E(“‘+l) xUg-(E ‘“+“~U)yE+~VXB(~nl’, (12) 

We now multiply both sides of Eq. (12) by the appropriate factors to form 
(E ‘*‘+ I). U) UE on the left of the equal sign. Rearrangement of the result provides 
an expression for the third term on the right of Eq. (12) in terms of Et”‘!” and 
V x B”“+ I’. Similarly, multiplication from the right with x U (and . U) leads to an 
expression for the second term-following the Eq. (6)-(7a) model. Subsequent sub- 
stitution of these results transforms Eq. (12) into 

Et”2 + 1) = 
EWI” _ Et”“’ xU~+;‘VXB”“+l’-~VxB”“+“xU~ 

(1 +P’) 

+ C(E (m)” ’ U) + y( V x B (nl~+li.Uj]U(/12-E) 

(1 +/P)(l +e) 
!13j 

This general expression for EirTr + I’ in terms of V x B(“’ + ‘I remains quite complex., 
We note, however, that when the B-field is always perpendicular to the plane 

containing E, then V x B is perpendicular to B, and the last term in Eq. (13) is zero. 
Consequently, for ANTHEM we let U = E, B = B_&, and E = E,i + E, j to produce 
the simplified component equations 
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These are combined with 

B(M+I)=BJW-c& z 1 (14c) 

to yield a single elliptic equation for B,. 

a. Temporal Differencing 

Let us now explore the consequences of our choices for the time levels of the 
various terms in the ANTHEM algorithm. We shall assume convergence of the 
predicted fields to the true fields. The iterative procedures that can lead to such 
convergence are discussed in Section 5. We look at linear stability for isothermal 
electrons, undergoing X-J planar oscillations in a uniform, motionless ion 
background, and in a prescribed ambient Bz-field. The mean electron thermal speed 
is a, = (~Tjm)‘!“, and o, = eB,Jmc is the gyrofrequency of electrons. We linearize 
Eqs. (2 )-( 5), assuming one-dimensional variations erkr and dependencies 
j, =L e 

ro(r-t”) =jxle,wm AI = 
and Bin) = BFJl’ ’ 

‘?‘, for example. Thus, j-\r’J = j,r g”, El”’ = E,, j’“‘, 
Ej”” = E, 1 (I”, ’ -, gfiZ. Elimination of E.,r, jY,, etc., from the resultant 
linear system leads to-a sixth-order polynomial equation for t. The moduli of all the 
roots of this equation must satisfy 151 < 1 for numerical stability. The ANTHEM 
algorithm is useful when o, At > 1. In this limit, from the i” solutions we find that 
with explicit pressure 

ka, At 
(co,, At)’ ’ (154 

is needed for stability. This agrees with the Ref. [3] result. Equation (15a) can be 
weaker than the strict Courant limit, ka, At = LZ~ At/Ax < 1, usually specified. With 
centered implicit v’*’ x B(‘“’ [i.e., (*) = (n? + l/2)] there is no time step constraint 
imposed by the magnetic field. Alternatively, with a gfobal~~~ explicit, v(‘“) x B term, 
At is constrained by the additional relation 

u At 
j/f=-L-- 

(co; At’)’ I. 
(15b) 

Further scrutiny of the stability polynomial shows that electromagnetic waves are 
strongly damped with the simple (7) = (m + 1). V x B(+) centering used here for 
exposition. The use instead of (t) 3 (in + 4) in Eq. (4), and V x E”) in Faraday’s 
law, Eq. ( 14c), will minimize this damping. Relatedly, (*) 5 (m + 4) should be 
employed for the j(*) currents in Eq. (4) to limit numerical damping of the plasma 
momenta. 

b. Spatial Dgferencing and Storage 

Equation (3a ) is most readily modeled numerically by storing the densities at the 
cell centers, and the E, and Ey fields at the mid-wall positions, as shown in Fig. 1. 
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FIG 1. Storage conventions used in ANTHEM for a typical ceil of wdth Ax and height A!. 

Thus allows convenient ceil-centered positioning of the Eq. (3b) electrostatic poten- 
tial 4. The placement of B, at the cell corners (or nodes j [30,2] then allows for 
simple differencing of Eq. (2). This is consistent with the storage of the A, and A, 
components at cell-wall midpoints, along with E, and Ej, respectively. Finally. the 
.j, and .jJ current components are stored at the mid-wall positions, facilitating the 
time advancement Ampere’s law, Eq. (4). Pressures and temperatures are stored at 
cell centers. Since the E-Fields and currents are stored at the wail midpoinrs, we 
define wall-averaged densities, for example, n,, = (n, I- , + n,. ,)/a, associated -,vith 
the E-, and c,,. B, terms. and let II,, = jnr/n,, in diflerencing Eq. (5 j. Similarly. CT.<, = 
tn.., -. 1 + II,. ,)i2. 

The elements of the Eq. (5) pressure tensor P, are taken as JJ,~ E mnfi~ + P + I’,.,- 
P,, = nun?f + P+ P,,,, and P,, z wm~,c, with the densities. pressures, and vefoc~ties 
evaluated at the time level-(/?z). The x-directed artificial viscous pressure is, for 
example, P,,, = MZ(IJ,. , - L’,, ,+ 1)z. L’,. I 3 L’,. I* , , and zero otherwise. For the storage 
of the dynamic elements in the pressure components we have defined cell-centered 
velocities. e.g., 0 ,- z (~1 ,, , + 21~~ I + I ),/2. The mesh-staggering of velocities and 
pressures has been imposed to assure the development of finite velocities in steep 
gradient regions. For example, the magnitude of isothermal static pressure driven 
velocity increments 

1 8P.n &llrE --__ (n,-n,-i) KT At 
--- 

inn 13s At= -(np,+n,),‘2 m Ax 

is limited to the maximal value (2rcT/nz) (At:Ais) (for n, or II,_- r #O) 
velocities been stored along with the pressures at cell centers as in 
magnitude of the centered increments 

(n 
&ix= - ?+l-" 

n,~+,) KT At 

t', 

&--& 

(16a) 

Had the 
161, the 
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could grow without bound as, say, n, -+O. We, therefore, reject this alternate dif- 
ferencing. Similar considerations apply to the transverse P,,, gradients. Thus, at 
each node we define an average pressure from the four cells around the node, e.g., 
P'"'=(P,,+Pi,-l + P,+ i,, + P,- ,, ,- ,)/4. Also, we compute corresponding nodal 
averaged densities II . ’ ‘) With these, the transverse increments are differenced as 

Again, this assures linite accelerations, if, alone, n, or n, ~, -+ 0. This may occur near 
a vacuum-plasma interface, or at an internal /20/e arising from the use of a Iimited 
number of particles in PIC simulation. The above discussion is heuristic. To allow 
for the future implementation of an r-2 capability, and since, generally, AX # AJ, 
the various density averages mentioned are, in fact, computed with volume 
weighted densities-effectively rendering them as mass averages. Combining these 
results, we use, for example, 

- (V. P),, Atjm, = n,,(6~~~,, + 6v,,,) (17) 

in defining the x-component of the pressure tensor contribution to jy” for Eq. (6). 
Although we store only the velocity and current components normal to the cell- 

wall faces, components parallel to the faces are needed as input to Eq. (7b) and for 
the calculation of the Ecrnrm elements in Eqs. (14a) and (14b). We designate such 
parallel components with a hat, e.g., Q for the parallel velocities. See Fig. 1. To 
avoid the possibility of singularity in calculating such components, where, say, the 
‘Jxx are zero at an interface, while some of the c, are nonzero, we mass average as 
for Eq. (16b), producing the supplemental component velocities 9,. In the 17 direc- 
tion, for example, these supplemental velocities are computed by the rule 

Again. the jJ 3 n-,, b ,, ; in addition, cell volumes must multiply the densities for use in 
As # Ay situations. 

Next, for the E(“‘)” of Eqs. (14) we need old E-components parallel to the walls. 
In the J’ direction along the left side of the cell we establish the level-(m) supplemen- 
tal field by a simple average gJ = (E-,: I,, + E,: ,,,+ , + E,, I- 1,,+, + E-,, L- ,,,)/4. 
Similarly along the bottom of the cell we use k’, = (E, r,, + E,. 1- ,,, + iTr, Ip I ,,.- I + 
E x, ‘., _, )/4. Then, when Eq. (14) is differenced for the left cell wall. it gives the time 
level-(m + 1) component pair (E.Y, J?,,), while at the cell bottom it provides (&, E,.). 
Note that with B, stored at the nodes, only the hat-free components of the E-field 
appear in the differenced form of Eq. (14~). 

In forming the p and 1/’ coefficients for Eqs. (14) we use the simple, nearest-node 
averages of By”‘, i.e., B~)=(B$'$+B$!,+ L )/2 along the left cell wall for the 
computation of (E!J'+ I), I?,!? + l)), and B”+‘)= (B$:j~), + BrL,;J',)/2 at the cell _ 
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bottom for the determination of (E,Y ^(*I + I) Et’” + i I). The &field-aligned V x 
ponents in Eq. j14) are easily differenced.‘In Eq. (14a), for example, ?B;/I?.I* = 
( B,. r.,+, - B,.,,)/Ay. Calculation of the remaining components is a little more 
complex. We first construct cell-centered I?,-fields. Again, for Eq. (14a), I$.:,\ = 
(B; r,, + B,. 1 + ,., + B, , + 1,1 + , + B=, ,.i + ,)/4. Then we use, for example, dB,,‘Zx = 
(S;.‘,.‘, - Bk.z,,‘,P ,)/Ar. This implies the coupling of RI. ‘,, to the corner terms 
5,. r+ I./i i- 

c. The B.. E, and E>, Determinations 

The more complex B-derivatives derive directly from the use of an implicit 
velocity in the differencing of the v x B in Eq. (5). They contribute nonsymmetrically 
to the matrix equation for B, corresponding to Eq. (14). Thus, intrinsically, a 
9-point, nonsymmetric elliptic solver is required for the BI solution. For this we 
have used an ILUCG solver that was provided by Anderson [33] and improved 
and vectorized by Jordan [34, 351. The ILUCG solver requires 19 full-mesh arrays 
and provides 15 solutions/s on a 50 x 50 mesh to an accuracy of 1 part m 10’. 
Alternatively. we have employed a vectorized Chebycheff solver provided by 
Manteuffel [34, 351. This is twice as fast, but requires 27 full-mesh arrays. 

Once the B, field has been determined by these procedures, the E-fields fohow 
from substitution of B, into Eqs. (14a) and (14b). 

The globally implicit v x B formulation exists as an effective. working option for 
the determination of the fields in ANTHEM. However, the complexity of the 
algebra required to set up the coefficients for Eqs. (14), the need for a 9-point, non- 
symmetric solver, and the difficulties in extending this approach into a full-field 
algorithm (wrth B,. B,., and E,) has encouraged our development of an alternate, 
explicit magnetic approach. 

B. Esxplicit Magnetic v x B 

In our simpler alternative approach the velocities for v x B are left e.vpiicit in 
selectire aspects of the differencing. Thus, we integrate Eq. (5) formally to produce 

with J”n’=j’n” - V. P At/m. Then the formal substitution of Eq. (19) in Eq. (4) 
yields 

E - Im+l)- Et’“’ - 4711 qx J, "TZ' At - 2 03 At+;*' x B(""),'c + c At V x B('" - 'I 

(1 -to&At’) 
(20) 

in which w& = 4rcq:tz!f’)/rnx and w$, z x o&. 
With only a single Bz component of the magnetic field and plasma motion and 

acceleration restricted to the s-y plane, the components of Eq. (20) can be written 
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/p + 1) = Eo.y - 
-I 

E’,“‘+l)=&+ 
.b 

for which we have defined 

(21a) 

(21b) 

E,= 
E’“‘-47r~qq,J~‘“)& 

(1 +o;,At*) ’ 

UC*‘3 5: w;~ At2 ;h”’ 

(1 + LO& A?) 

(22a) 

(22b) 

and 

(22c) 

Here, E, is the reduced Eq. (20) for B= 0. In one dimension it constitutes the 
implicit E-tield solution for electrostatic problems [9, 121. To calculate U and A, 
we evaluate the (u,, and wPO factors by using the wall averaged densities, FT..  for 
Eq. (21a) and n,, for Eq. (22b), respectively. The velocities U run along the 
cell-wall surfaces (see Fig. 1) and are cotnputed from the supplemental G velocity 
components, such as given by Eq. (18). The B!“’ for Eqs. (21) are evaluated as 
averages at the cell-wall centers. 

Combination of Eqs. (21) and Faraday’s law, Eq. (14~) yields 

(23a) 

with 

The bracket’s z subscript refers to the only nonzero component resulting from 
vector operations in Eq. (23a). 

a. Our Choices for v(l) 

With (*) z (m + 4) the flux equation, Eq. (191, reduces to Eq. (6) with the E- 
dependent solution, Eq. (7). We use the equivalent of these expressions to advance 
the plasma velocities, as detailed in the next section. There, the implicit choice for v 
assures us that the component fluxes and velocities will be finite, regardless of the 
magnitude of Q, At. 

Similarly, the choice (*) = (nz + 4) in Eq. (20) for the E-field produces an 
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expression that can be rearranged to yield Eq. ( 13). Changes in V x B can :hen 
generate both parallel and orthogonal changes in E. In all the problems run thus far 
with ANTHEM, we find, however, that the explicit choice (*) z (m) in Eq. (21) is, 
in fact, sufficient to yield physically plausible results, in essential agreement with 
those from the more complex implicit procedure. 

Finally, by making the explicit choice (*) = (~71) in Eq. (23b), we are led to 
the relatively simple 5-point elliptic Eq. (23a) for B,. We take the view tbat 
[ *) = (m) in Eq. (23b) is the first choice of an iterative procedure Ieading to the 
proper implicit selection, (*) = (m + 5). For the simple case of a single B-component 
and planar cross-field plasma motions, analysis shows this iterative process to be 
stable for arbitrary values of the magnetic stability parameter &I of Eq. ( 15b ). This 
is a consequence of the fact that perturbations in B, drive velocity changes that are 
principally orthogonal to the direction of B-field advection from the v x B term. Bn 
practice, we have found no instance when the B-fields from this simpler algorithm 
differed in any substantive way from those derived via the more complex globahy 
implicit equations. 

b. Soirttim to the Simpkfied B, Equation 

To complete the field solution we simply carry out the explicit Eq. (23b) updates, 
producing BltJ, and then treat the resultant Eq. (23a) expression with an elliptic 
equation solver. The last two terms in Eq. (23b) represent advection of B”:’ with 
the velocity LJ. To avoid numerical instability we have used donor-cell spatial dif- 
ferencing [36]. The addition of Van Leer corrections [3,X] would render the B- 
field advection with less numerical diffusion. When the time step is set to obey a 
Courant condition on the hottest electron component, it follows that U, br < hsa, 
so that we can advect the old, level-(m) B-field. Equation (23a) exhibits five-point 
symmetric coupling of B, at the node i, j to B, at the neighboring nodes ik Z,j and 
i--j& 1. It is readily inverted with an ICCG solver [37] once B!+) is known, We 
simply invert the matrix equation @IBy + ‘) = B!+) for the unknown elements BY” + r). 
For this we have used the decendent of a solver provided by Kershawi387, 
modified and vectorized at L,os Alamos by Jordan [34]. The JCCC solver can 
accomodate symmetric elliptical problems with 9-point discretization. It requires 
only 15 full-mesh arrays and equals the speed of the more core-demanding 
Chebycheff solver. 

With B, determined, E can be determined from Eqs. (14a) and (14b) [equivzlenr 
io using i *) = (n? + 4) in Eq. (21)]. However, we have found it simpler and 
sufficient to use Eq. (21) directly with (*) s (HZ). 

c. PlzJssical interpretation 

For large mPO At the E, of Eq. (22a) reduces to - (l/en,) V(n,tiT,) (assuming 
negligible electron drift). Thus, the second term on the right side of Eq. (23b) can 
represent a thermo-electric source, going as Vn, x VT,, for new B-field [39, 401. 
The last two terms represent advection of B, with the fluid components. Finally, the 
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partial derivative terms in Eq. (23a) imply a dispersion or separation [41] of the 
advected BZ from the moving fluid elements over the skin depth LI. Alternatively, in 
tenuous plasmas, for which up0 At G 1, Eq. (22a) limits as E,, -+ E’“’ since remain- 
ing fluidic terms in Eq. (13a) are small and A + c At, so that Eqs. (23) reduce to a 
model for the propagation of light. 

For large time steps (and ions moving no faster than the electrons) the effective 
velocity U reduces essentially to the electron velocity, U-t v,, where v, z 
(y1,v, +n,v,)/(n,.+n,). Also, for large At our A becomes the electromagnetic skin 
depth c/op,,. Moreover, Eqs. (4) and (19) give tl,,. -+ (c/4nen,)(dBZ/~x) in this limit, 
so that the ions in one-dimensional x-direcied problems, are, for example, 
accelerated by 

as employed in the early magnetosonic shock propagation studies of Ref. [35]. 

d. Applicability of the Simpler Scheme 

In all the problem thus for examined with ANTHEM no significant difference has 
been observed in the results obtained with either the “globally implicit,” or the 
“magnetic explicit” modes of the field algorithm. Thus, no difference was seen in the 
demonstrative calculations at the end of this paper, in our recent calculations of the 
Nernst advection of B-field in collisional plasmas [42], or in our recent com- 
putations of the plasma dynamics in a Plasma Erosion Switch [43] (run for the 
Eq. (15b), M exceeding 20). The explicit magnetic approach should be attractive, 
due to its relative simplicity. But its chief value may lie in its possible extension to 
full-field problems. While Faraday’s law generates a most complex system from 
Eq. (13), the explicit magnetic approach yields the apparently more tractible 
procedure of the next section. 

C. The Full-Field Algorithm 

The explicit magnetic v x B approach is readily extended to provide 
straightforward solutions for problems in which all the six field components 
(E,, El, E,, B,, B, and BZ) are active. For this extension A,, E;, j=, and ~1; are all 
defined at cell centers, B, is stored at the bottom cell-wall midpoint, B,. is kept at 
the left side cell-wall midpoint, and iJ/& remains zero. Motions along the B-field 
components are allowed, and the pressure tensor is generalized accordingly. The 
components of Eq. (20) then become 

(25) 

with E,,=EO-U(“’ x B(“)/c from Eqs. (20) and (22), and KG 1 + wi, At’. At the 
beginning of a time step E,, is completely known. 
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Equation (25) can be combined with Faraday’s law to produce the three com- 
ponent equations 

and 

B!‘“t”= By’--cAt{VxE,,).-cht 

The B, equation is equivalent to Eqs. (23), except that additional coupling IO B, 
and B!. is included e.xplicitfy in the x o.$, A?(vr’ x B(“‘))ic term of E,,,. As with the 
earlier, Section B more restrictive version of the algorithm, a solution for BF+ I) 1s 
easily achieved with an ICCG solver. 

The remaining B,, and B?. equations are strongly coupled, and through 
elimination would lead to separate fourth-order equations beyond the capabilities 
of our elliptic solvers. We, therefore, bypass these equations and turn instead to the 
vector potentials. 

We return to Ampere’s law. expressed in terms of A and 4 with the aid of 
Eqs. (3 ). Setting ( *) = (m f 1) in Eq. (4) and letting V . A = 0 for the Coulomb 
gauge, we obtain 

Next. summing over the components of Eq. (19) [here. with (*)z (t?;1,J we 
produce 

Substitution of the Eq. (28) flux sum into Eq. (27) then yields 

A(“‘+:)- 
c= At2 V’A”” t 1) 

(1 to& At’) 
= A’“” - c A; Vdon + i : - c A[ E,,, (29a) 
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We need only the z component of Eq. (29a), which is decoupled from 4, i.e., 

This elliptic equation is symmetric and readily solved with our ICCG package for 
AZ. Then, 

(30a 

and 

(30b 

For maximum stability of the algorithm the E-fields should be obtained from 
Eq. (13), although the direct use of Eq. (25) may suffice (as does (*) = (nz) for 
Eqs. (21) in the restricted B = II=& case). 

For numerical stability with the explicit coupling terms, i.e., V x (U’“’ x B”“‘) At 
in c At V x E,, of Eqs. (26), we must respect a Courant-like time step limit 

(31) 

In our experience, limited to a single B-field component, we have used the more 
stringent rule obtained with max[ Ivl?] replacing U. The expanded coupling term 
includes elements of the form a( L’, B,)/dx,. These should be modeled with donor- 
cell or Van Leer differencing for additional stability. 

We can report that in recent full-field applications of the alternate VENUS code 
algorithm [18] to the Weibel instability problem [44], no noticeable changes were 
observed [45], when velocities in the VENUS v x B term were switched from 
implicit to explicit values. However, our full-field extension has nut yet been tested 
in ANTHEM. In the very least, it should be reliable for weak B-field problems 
(Md l), where it could certify the results of more complex algorithms [ 16, 201. 

4. PLASMA ADVANCEMENT 

A. Particle Motion 

Once the advanced fields have been calculated for any computational cycle, the 
velocity uI and position xI of any collisionless PIC particles used to represent a 
plasma component can be advanced in accordance with Newton’s Laws 
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dt m,\ c / 

We difference these as 

!33a 

The velocities are centered in Eq. (33a) to assure energy conservation in the 
gyromotions. 

For each particle 1 the solution to Eq. (33a) can be written 

wtth 

(Ml” _ u/ - 
[lp + u)“) x n, + (Iq”‘. n,) Q,] 

(1 +n;, 
(3471 

and E/E yI At/m,. F’or stability and accuracy the E- and R-fields should be 
evaluated at the advanced level-(m + A ) particle positions. These positions can be 
found by the Newton-Raphson iteration of Eqs. (33b) and (34). The iteration 
procedure is outlined for one-dimensional problems in Ref. [3]. Typically, three 
iterations are sufhcient to isolate the positions to one part in 10’. 

Clearly, the accelerations, Eq. (34), experienced by a particle which just happens 
to be located at a cell-wall center are very similar in form to the accelerations, 
Eqs, (7), experienced by the corresponding auxiliary fluid at the same points. That 
is, each cell-wall center point may be thought of as a particle of wall-averaged mass 
accelerating in the local fields. A difference is that the fluid velocities 
~(“‘1’ [I s jCml”/nC”‘) ] include an increment due to the pressure gradients, which is, of 
course, lacking in u’“)” of the particle update expressions. 

As the final position of each particle is determined, we add its contribution to the 
local cell-centered density, currents, and pressures of the component it represents. 
The usual bilinear interpolation procedure (or area-weighting) [l] is used to 
attrtbute the particle contribution to its neighboring four cells. The components 
P l.Y 1 P,., , and P,, are accumuiated directly for use in Eq. (6 ). Currents j attributed 
to the cell-wall centers for Eqs. (14) and (20) are determined from averages of the 
accumulated cell centered values j. For example, j,, = (Jz,. I-~ I.] +J,,, ,,,),Q, such 
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that, again, u =i a.x - xx /n,,. Also, the E- and B-fields are first averaged to the cell cen- 
ters before they are weighted to the particle positions--to eliminate self-forces. 

The area-weighted currents accumulated by these procedures will satisfy flow 
continuity in some sense, but generally not in detail. This can cause difficulty in 
accurately determining implicit fields consistent with Poisson’s Eq. (3a). Con- 
sequently, an additional set of true currents j is determined by precisely accounting 
for the density changes in neighboring cells as each particle moves within or across 
cell boundaries during a time step. The construction of these improved currents was 
first discussed by Morse and Nielson [46]. We use a variant of this construction 
procedure that was recently designed by Gisler and Jones [47] for use in a 
relativistic implicit PIC algorithm [48]. In Section 5 we show how these improved 
currents can be used to provide important corrections to the fields. 

B. True Fluids Update 

In hybrid modeling one or more of the plasma components is treated as a it true 
fluid. Such components are advanced via a continuity equation 

Lh -.2= 
at -V. CnxvJ, (3ja) 

a momentum equation, the equivalent of Eq. (5), and an energy equation 

a[(fKT,)n,]/& = -v. [(;KT,)n,v,)] - P, v.v,-v.q,. Mb) 

For the heat flux qsI in Eq. (26b) we use Braginskii’s expressions [31], flux-limited 
to assure that, for example, electron thermal energy is transported no faster than 
the mean electron thermal speed. 

Strictly speaking, use of the fluid modeling can only be justified when the plasma 
component is in some fashion sufficiently collisional to maintain a nearly isotropic 
distribution among its elements. This might occur from turbulence, reflection off 

confining B- or self-consistent E-fields, or simply from classical collisions. We have, 
however, neglected classical collisional coupling between the components in the 
present development. The implementation of collisional effects is outlined 
elsewhere [26]. Formally, we can close the system of Eqs. (5) and (35) with the 
assumption P, = n,KT,. The results from fluid modeling in collisionless regions can 
then, at least, be used as a basis for comparison with the results from more com- 
plete particle simulations. 

Following Gentry et al. [36J, DeBar [49], Sutcliffe [SO], and Youngs [51], we 
split the hydrodynamic update into a Lagrangian phase and a remap phase. During 
the Lagrangian phase we accelerate the cell-wall midpoints under the action of the 
pressure gradients and fields and then move these points to new positions in accor- 
dance with the new midpoint velocities. During this move the cell densities can rise 
or fall. Correspondingly, the component temperatures can increase or decrease 
through the action of hydrodynamic work. Then, in the advection (or remap) phase 
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the walls are slipped back to their original positions on the Eulerian mesh, and the 
component materials are allowed to cross the walls into the neighboring cells. 

The new velocities for the Lagrangian phase are obtained, using centered implicit 
velocities in the v x B terms, as for Eqs. (7) and (19). These velocities are identical 
to those that would come from Eqs. (7) with v, = j&l,, except that the dynamic 
terms, i.e., m.,l~,r~D,, are omitted from the pressure tensor. (The dynamic terms 
contribute to an estimate of advective effects in the field solution; these effects are 
recovered in the second phase of the hydrodymic advancement procedure.) At the 
left cell-wall center we compute the pair (u,, til), and at the cell bottom we calculate 
(G,, tl,,). Only the values L’, and t’,. are then used to move the cell wails. With these 
new Lagrangian velocities (henceforth designated with a tilde, e.g., i!,,), we proceed 
to update each fluid component in turn. For each, the operations are splii inte 
separate ,Y- and J.-directed one-dimensional problems. In a given cycle the .Y direc- 
tion may be updated first, followed by the y direction In the next cycle this order is 
reversed. The flow in each direction is treated in accordance with the Fhids Upd~‘ul~ 
discussion of Ref. [3]. 

Completing the Lagrangian phase of the a-fluid in the x direction, for exampleY 
we move all the cell boundaries, in accordance with the L7,, values from .$i7L) to 
temporary positions I,, for a change 6.x,. The new Lagrangian densities zhen 
become fi, = n~‘(Ax’““/A~?) with Ax = X, + I - s,. Correspondingly, the hxdro 
dynamic work term in Eq. (35b) produces the temporary new temperatures, T, = 
TF’ - P’JdvJ8s) At, in which P’ includes the x directed artificial viscous pressure 
P,,. For maximal accuracy with stability the temporary positions should be located 
through the use of an additional predictor-corrector step, by which the old pressure 
gradients and fields at the old positions are first used to provide acceierations 15 

half-time velocities and positions, with this data subsequently employed to provide 
the pressures and fields for a hnal acceleration and advancement to the end of the 
time step. At present. our algorithm neglects this extra correction. 

In the follow-on remap phase for component-;x, we advect first density, then tem- 
perature, and finally the two components of velocity. As each vertical cell wali is 
returned to its initial position, a flux 

j., (b.u,/At)tir=t7,i2, tL 36a ) 

crosses the wall. In the density advection calculation second-order accuracy is 
approached by using Youngs’ [ 5 1 ] extrapolation 

iz,-ii,+;(1-1~)DAx (96b) 

in which u denotes the donating (upwind) cell, and II= min( Ia,/ hr,/A,~, 1). The term 
conraming D allows for a density gradient near the donating cell. The purely 
second-order choice n = D = (6, - nl, 1 )/Ax can give rise to nonphysical maxima 
and minima in the solution. Consequently, nonlinear limits are set on D which 
guarantee monotonicity, while minimizing numerical diffus!on. The limiter used is 
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for which R = 0 if sgn(n”, - ii,) # sgn(c, - fi’,), and R = sgn(i?, - 6,) otherwise. Also, 
do i with I’ = i - 2, if 5, > 0, and dz i - 1 with r = i + 1, if L7, < 0. More details are 
given in Ref. [3]. The Van Leer method [28] used here, as interpreted by 
Youngs [Sl], is akin to the FCT approach of Book et al. [52], except that the dif- 
fusion corrections are made as an integral part of the advection update, rather than 
in the separate antidiffusion step that is characteristic of FCT. The new density 
following the x directed advection is 

ii.tm + ‘I = [fi A.? + o;-, 1 -j,. , + 1) At]/A-y. (36d) 

Similarly, as the vertical walls are restored to their starting positions, they are 
crossed by a flux of specific energy SE rj, F, leading to the new temperature 

f’@+“= [i A.?#+ (&,-<SE,+,) At]/(n Ax). (37) 

The fluxed F value is determined from Eq. (36b) by substituting T for n and letting 
?I = min( i.Xj At/(n Ax),, 1). Again, u indicates the donating cell. 

Next, for the advection of the longitudinal U, velocities, we construct the cell- 
centered fluxes j: = GX, ,~ 1 +j, ,)/2 and 6@ =j:6., and we determine that 

ti1”’ + ‘) = [n’., A.?G, + (d@,, - &D, + , ) At],‘(n.y Ax), (38) 

with 6, derived from Eq. (36b) by changing n to L’, with rl= min 
(L/Y AfAn, Ax),, 1). 

Finally, the transverse velocity component I’,, is advected with the averaged flux 
.z = 0;. I,, +.7x. r., - 1 )/2. To produce c,, we change II to v, in Eq. (36b) and use the 
definition II- min( Fzj At/(n,. AX),, 1). Then we construct the average specific 
momentum flux 6 Y =T,! fi,., which allows us to complete the x-directed advection 
with the result 

I$?+“= [Z-, A-+, + (6Y,-&Y,+ r) At]/(nj, As). (39) 

A corresponding set of updates is then made, starting, for example, with the inter- 
mediate ri property, to calculate the effects on each of the moments of the y-directed 
advection. 

Special care must be taken at the matter-vacuum interface for each of the fluids. 
Boundary densities n, and 11,. below a floor value n,,, are considered vacuum den- 
sities. We set c,, for example, to zero, when nil”) < nvac. Typically, IZ,,, is set four 
decades below any physically important density in a problem. The Eq. (36b) u] 
values are set to unity in the boundary cells to assure donor-cell advection up to 
the vacuum interface. Also, the static and artificial pressures are set to zero in any 
compressive cells bordering the vacuum to avoid erroneous numerical 
hydrodynamic heating of the edge material. In Ref. [3] we recommended the 
implementation of entropy advection, in lieu of internal energy advection, to avoid 
the numerical edge heating. While this was generally effective, it was not readily 



2D IMPLICIT FIELII ALGORITHM 549 

extended to imperfect gases or the usual tabulated equations of state. Thus, here we 
return to more standard procedures. The additional use of volume-of-fluid (VOF) 
techniques [53, 541 is contemplated for a more refined modeling of the vacuum 
boundary. 

Following the advection updates, an implicit evaluation of $,K 
(ST,,ii’t) = -V. qX permits the determination of additional r, changes due to the 
last term in Eq. (35b). Thus, we can model the effects of flux-limited thermal 
conduction. 

The availability of fluid modeling is particularly useful in treating plasmas with 
steep density gradients, which might otherwise require a very large number of 
simulation particles to represent the dense side of an interface. Such steep density 
gradient regions are prominent in CO, laser-driven transport problems near the 
critical surface [SS] where the laser light is absorbed. 

5. FIELD CORRECTIONS 

In the straightforward application of the Section 3 algorithms to steep-gradient 
laser driven problems, we have found that, while the calculated B-fields are 
physically quite plausible, the E-fields must be in error, since the electrons gradually 
separate from the ions, spreading over many Debye lengths into the adjacent low 
density regions. Our implicit scheme should minimize such nonphysical separation 
by manifesting sufficient charge separation related E-field components to pull the 
electrons back to quasi-neutral positions. However, th’e basic Section 3 algorithms 
will fail to manufacture such corrective fields, since Eq. (4) makes no direct 
reference to the charge densities, and since the currents employed in Eq. (4) wi!i 
generally fail to obey fluid continuity in detail. 

More specifically, from Eq. (35a) after referencing the old plasma densities ii’;“’ 
w-e can produce the time-integrated ausiliar-Jl corztinuit:: equatiom 

“, 
Inl+LI=jlpJI-~.jllpl+ II Ar, c40; 

Given the implicit field solutions for any computational cycle, Eqs. (19) swill 
generate predicted currents, which can be placed in Eq. (40) to provide predicted 
densities. It is these predicted densities 11,” ( + ” that will differ, in general, from the 
true densities fit”‘+ Ii that accumulate after the particles and/or true fluids have 
advanced. The t’wo densities will differ because, for example, the Eq. (19) currents 
are determined from spatially centered average densities and fields evaluated at the 
cell-wall centers, while the true plasma advancement uses particles that are 
accelerated in area weighted fields and fluid currents calculated with Van Leer 
averaged densities. 

A. The Longitudinal E-Field Correction 

In devising a correction for the difference between the densities predicted each 
cycle and the densities actually achieved, it is first useful to observe that the E-field 
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can be divided into longitudinal (irrotational) and transverse (rotational) parts, i.e., 
E = E, + E, with V x E, = 0 and V ’ E, = 0. Also, note that in Coulomb gauge (for 
which V.A=O) V.E=V.E,= -V2d [56]. 

Focusing now on the longitudinal E-field component, we take the divergence of 
Eq. (4), obtaining 

Substitution for V. E from Eq. (3a) then gives 

Equation (41b) will agree with the sum of the Eq. (40) components, and the 
predicted E-field will act to correct the charge separation errors just discussed, if we 
make the change E (m’ --) E’““’ c Eh’ + 6E;“’ in Eqs. (4) and (20) such that 

V. E’“” = 477 1 q,fiLm’. 

This is accomplished by letting 

v. 6Ej”’ = - V2&f”” = 4n 1 q,$/‘J _ V . E(m). (43 1 

The solution &$‘“’ to this Poisson equation is readily determined using the 
FISHPAK routines of Adams, Swarztrauber, and Sweet [57, 581. Then, 
hEj”‘J = - V&j(“), and 

El’“” = EW’J _ V@‘“‘. (44) 

This is equivalent to the one-dimensional held correction introduced by 
Denavit [ 131. 

Integrating Eq. (42), we see that for one-dimensional electrostatic (B = 0) 
problems with, say, reflecting boundaries at x=0, one finds that Ey”” = 
4x cs& ‘x fifrn) & applies. It follows that Eq. (20) for the predicted future field 
reduces to 

(45) 

in agreement with Eq. (4) of Ref. [3]. We can see that Eq. (45) includes a corrective 
term to eliminate density deviations by considering the limit wPO At 9 1 with 
nzi$ m,. In response to an electron density excess 6ir at the edge of a plasma, 
Eq. (45) will produce the predicted field E, = (6~/n)(n?,/e)(Ax/At’). By Eq. (19) this 
will yield a predicted current jy + ‘) = - (elm,) nE, and by the continuity, Eq. (40), 
a corrective change in density for the next cycle H’~ + ‘I -n”“’ =j,(dt/dx) = - ix 
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The field corrections derived from the density deviations 6iir1 can also be 
associated [56] with longitudinal current deviations, i.e., 

The Sj,! represent the true excess longitudinal flux over the j, predictions of the 
previous cycle which acted to bring about the density deviations diz,. The 
longitudinal fluxes can be derived from the full fluxes by the operations: 
-V”$ = V. j followed by a Poisson solve, and then j, = -V$. 

Experience has shown [3,9, 10, 13, 593 that use of xhe longitudinal correction 
provides physically plausible, quasineutral solutions across steep density gradients 
in the modeling of dense one-dimensional plasmas. In two-dimensional 
applications, however, use of this correction can have rlisastroers consequences. 
When the gradients in density are such that wpO 2 Ar’ ranges from. say, 1 to IO’ over 
a few cells, the addition of the V6$ term leads to the establishment of electrostatic 
potentials up to 10 times the energy of the hottest electrons produced in Baser- 
driven problems and to the development of B-fields 10 times larger than those 
determined via an uncorrected calculation. Examples are discusses in Section 10. 

At first, we were surprised by these difficulties stemming from the longitudinal 
E-field correction, since it mimics the Boris [30] correction which has been used 
successfully in explicit two-dimensional codes since 1970. Furthermore, earlier 
two-dimensional implicit studies 1716-191 had reported no related problems. Later, 
we found that the new problems arose chiefly in steep density situations that had 
not been probed before, but which were now accessible, by virtue of the hybrid fluid 
modeling of the backgrcund laser illuminated plasma. More specificaflyC the new 
difficulties were related transverse E-field errors introduced along with the 
longitudinal correction under implicit modeling. 

If j, is treated explicitly, [( *) = (m)] in Eq. (4), then the addition of - V&$““) to 
E ““I will produce only a longitudinal change in ECms ‘!. But once we go to the 
Eq. (20) implicit formalism, the effect of this addition is to produce a net change 

in the predicted E-field. This change is likely to have a transverse component 
5Et” + ’ ’ (for which V . SE:m + I) = 0 ), since, generally, V x [ - V&Y”“: 
(1 + CI&, A?)] # 0. The rotational component ,E;“‘+ I’ is negligible when CIJ& hi is 
either small compared to unity or nearly constant-the regime of most earlier PD 
simulations [ 16, 181. This component can produce a change c%‘~” Ii = 
--c At V x 6E:“” !’ in the B-field calculated for the next cycle. It can also contribute 

to the irrotatronal fields (and potentials) calculated in the next and any subsequent 
cycles, since in Eq. (20) V. [6Ei”‘j/( 1 + o$ At’)] is unlikely to be zero. It can, 
therefore, lead to the secular growth of B and 4 seen in our steep gradient 
simulations. 
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B. The Transverse E$eld Correction 

To eliminate these difficulties stemming from the longitudinal correction, we can 
employ the Eq. (44) replacement, but with the addition of a transverse field correc- 
tion as well, i.e., one can use [60, 261 

E(m) + Et”‘)” E E’“” _ VQ’“” + V x Ah) 
(48 1 

in Eqs. (4) and (20). Taking the divergence of Eq. (4) with this alteration, one can 
see that the additional V x 1’“’ term makes no change in the previously achieved 
agreement between Eqs. (41a) and (41b). The I-function should be chosen so as to 
cancel exactly the transverse consequences stemming from the introduction of 
-V&I?. That is, we choose to require that the net correction make no change in the 
calculated B-field for the next cycle. From Eq. (20) we see that this is accomplished, 
if 

VX 
-V&/p’+ v x ;l(m) 

(1 +o;,Af*) I 
= 0. (49) 

For the planar plasma flows modeled, only a =-component is required for 1. 
Consequently, after multiplication by c2 At’ Eq. (49) rearranges to 

with 

(job) 

The factors Ap are defined through Eq. (22~) for the left and bottom cell-wall cen- 
ters. We can readily solve Eq. (50b) for I??‘. using the ICCG package employed 
earlier on Eq. (22b) for B,. The use of 1, = J;e= in Eq. (48) completes the field 
corrections. 

Note that with globally implicit v x B differencing 6E’“’ r) becomes a more com- 
plicated algebraic function of VSd (“‘) than indicated by Eq. (47) (as evident from 
Eqs. (14)). Still, V x 6E, cm + ‘I= 0 can be solved for a corrective AZ. Again, the greater 
complexity with this differencing leads to a 9-point, nonsymmetric matrix equation, 
requiring either the ILUCG or Chebycheff solvers. 

As in Eq. (46), the A-function can be associated with a transverse current 
deviation, 

where the SjOlt denote the additional transverse fluxes needed to assure that B 
undergoes zero change, when the longitudinal correction V64”“’ is added. 



2D IMPLICIT FIELD ALGORITHM 453 

The use of the net Eq. (48) correction gives well-behaved, physically plausible 
results in the simulation of plasma problems with steep gradients. Quasi-neurrality 
is achieved where appropriate. The calculated potentials are O(KT,) and the 
B-fields evolve smoothly. See Section 10. However, our assumption that B should 
be unaffected by our net correction is somewhat arbitrary and principally justified 
by its apparent success in simulation. 

We need not use the accumulated density deviations to form the longitudinal 
E-field correction, or the zero-changed B-field condition to estimate an effectiv-e 
transverse current correction. Instead, we can employ the deviations of the 
true Ruses j”“+ !I from the predicted fluxes J, ‘w+ iI to form both corrections 
simultaneousi;. 

True fluid fluxes are readily available and. in fact, used [see Eq. (36a)] to update 
the various fluid moments. True particle fluxes can be accumulated. as indicated in 
Section 3A and Ref. [46], by accounting for the detailed passage of particles withm 
and across cells. such that continuity, Eq. (35a), is obeyed with precision. The 
improved particle accumulation procedure [46, 611 demands roughly 280 lines of 
FORTRAN coding, while the older bilinear prescription requires about 24 lines. fn 
explicit models the more tedious accumulation also tends to be more noisy 1461 
(by referencing one boundary for a typical passing particle instead of two [63]). 
Thus. the bilinear procedure has generally been preferred. However, with implicit 
fields the excess electrostatic noise tends to be suppressed, and, more importantly, a 
transverse correction is automatically obtained-with no a priori assumptions as to 
its effects on B’“” I’. 

In their original exp/icir application [46] to simulation problems, the true 
currents were used directly in a leap-frog scheme to advance the E-fields from ievel- 
(m) to level-(m + 1). There were no corrections or iterations. Corrections were 
needed m alternate schemes [30, 621 which accumulated current bilinearly. By con- 
trast, the E-fields in our implicit calculations are first advanced with predicted 
currents, so that the true currents must make their contribution either as a correc- 
tion deferred to the next time step, or iteratively in the present time step. Here we 
shall discuss the deferral procedure. Iterative correction is detailed in the Appendix. 

At the end of each cycle, using the newly calculated E’“‘+ ‘) and I%‘“‘+ I’/ we 
evaluate the predicted currents implied by Eq. (4) by forming 

Subtracting this from the true flux accumulations, we establish -477 x q,6 
At’““. Now in the next cycle old data is referenced by the index change 
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(m + 1) -+ (m). Thus, to repair the J, ‘(‘n+ I) of the next cycle, so as to eliminate the 
error of the previous cycle, we make the correction 

in Eqs. (4) and (20). 
To check the accuracy of this correction, we take the divergence of Eq. (53), 

obtaining 

which agrees with Eq. (47)--proving that Eq. (53) replicates the longitudinal E-field 
correction. In addition, the remaining part of the 6jy) sum provides a transverse 
correction replacing the L-function part of Eq. (48), i.e., replacing Ey. (51). We have 
found that in the simulation of taser irradiated steep-gradient foil problems the 
Eq. (53) correction, using the true currents, gives smoothly evolving. physically 
plausible results. The arising potentials are of @k-T,,). The B-fields calculated are 
very similar to those from the combined longitudinal and l-function corrections. 
Eq. (48), except that B, contours in lower density regions tend to be smoother and 
less convoluted (see Section 10). So the current correction approach gives 
reasonable results, avoids the ad hoc assumptions motivating the use of V x E.““‘, 
avoids the Eq. (50a) elliptic solve, and it can be derived as the first step of a con- 
vergent iterative procedure. For these reasons this final correction is peferred. 
However, should one choose to avoid the complex current accumulation 
procedures demanded by this method, the combined longitudinal and i-function 
corrections remain available as a useful, but approximate, alternative. 

The significance of the current correction just described becomes more clear, 
when it is viewed as a deferred final step of an iterative procedure that seeks to 
match precisely the advanced fields to the advanced plasma coordinates. For this 
explanation, see the Appendix. 

6. A TYPICAL ANTHEM CYCLE 

A typical calculational cycle begins with a determination of the time step, which 
is set to respect the smallest Courant limit imposed by the various plasma com- 
ponents (usualfy that of the hottest electrons). In addition, At is allowed to increase 
by no more than 20% per cycle. Next, in laser problems, we track in laser light and 
determine the location of the critical surface. 
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After this, hot electrons are created. If these electrons are treated as particles, 
they are introduced at the critical surface and given an appropriate distribution of 
velocities. This is usually a drifting Maxwellian ejected toward the laser and emitted 
in a 20’ cone about the emission direction. If instead the emitted electrons are a 
true fluid, then they are produced with zero-drift speed and a temperature 
corresponding to experiment. In each case cold electrons are destroyed at the 
emission points, so as to conserve charge. Their energy is added to the emitted hot 
electrons. The fluid moments are corrected to take the hot electron creation into 
account. 

We next compute the matrix coefficients for the elliptic solvers which determine 
the B, field. First, the true current correction is added lto the old E-field, following 
Eq. (53 ). Generally, we employ the explicit magnetic v .K B mode, so next the coef- 
ficients for Eq. (23) are constructed. We then go to the ICCG solver package. 
extract the BY+ ii __ 
to establish @“’ + i ’ 

holution, and substitute the result into Eq. c2i) (with (“) = an:)) 
and P’+ i’. Except in special tests, pro rfernriae correction is per- 

formed; the true current correction suffices, so the plasma coordinates are advanced 
once per time step in these fields. 

If we should choose to iterate, we must subcycie through the process oi 
calculating the fields and then advancing the plasma from its level-(nr) coordinates, 
improving the fields and then advancing the coordinates again from level-in!). etc. 
Finally, the true current correction is added at the beginning of the next cycle for 
further improvement. 

Update of the particles and true fluids follows the Section 4 guidelines. The com- 
ponent cell-wall velocities for the Lagrangian part of the true fluid hydrodynamics 
are calculated. Then. the coordinates of any particles are updated, and the various 
moments are accumulated. Finally, the advection phase of hydrodynamics is com- 
pleted for each true fluid component. 

The cycle is completed with the generation of printed and graphical output. 

7. THE ELECTROSTATIC LIMIT 

Electrostatic solutions, for which the effects of electromagnetic waves are 
neglected, can generally provide a useful subspace for simplified test simulations. 
For the calculation of such electrostatic solutions, one might be tempted simply to 
set B to zero in Eqs. (4) and (19), while suppressing Eq. (2). This is acceptable in 
one-dimension [13], but fails in two, as evidenced by the fact that in steep-gradient 
laser-driven problems the calculated electrostatic potential (b grows to many 
multiples of k.T, in just a few cycles. 

A successful alternative approach is to take the curl of Eq. (20) for the Faraday’s 
law B-field update, while setting c in Eq. (22a) (and in the v, x B’““/c term of 
Eq. (20)) to a very large value-to say, IO6 times the physical speed of light. This 
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forces V x E’“’ + ‘) + 0, producing the irrotational electrostatic solution. Thus, one 
obtains 

ox 
El’“’ - 47~ C qz Jr’ Af + c At V x B’ 

(l+o;,At’) J 
= 0, (55j 

which rearranges to 

iI;‘+‘- -c At(Vx E,J; (56a) 

with 

(56b) 

As in the case of Eqs. (23), this system is readily solved with the ICCG package for 
Bi. The substitution of BI for B!“’ + ’ ’ 
then provides the electrostatic E-field. 

m Eq. (20) (with the v, x B term suppressed) 

One can take the view that for irrotational results, BI constitutes a virtual B-/ieM, 
the curl of which is needed to cancel out the rotational component of x qxjy+ ” in 
Eq. (4). If c is made uniformly large (say. lo6 times physical c in the V x BI term, as 
well), the numerical B’-field values will be negligible, while c Ar V x B’ will continue 
to balance and cancel the rotational component. Thus, in practice, we calculate 
electrostatic solutions by simply setting c to large values in Eqs. (20). Special coding 
for electrostatic tests is thereby avoided. A 106-fold c increase has been employed to 
avoid computational round-off errors that might occur at higher multiplications. 

Clearly the function rB’ At plays a role very similar to that played by ).“‘I’ in 
Eq. (49). In fact, our experience with BI lead to our use of E.‘“” for a transverse 
addition to the usual longitudinal held correction. Note, incidentally, that for quasi- 
neutral electrostatic solutions the simple longitudinal correction of Eq. (-l4) suffices. 
The steep-gradient difficulties requiring more subtle corrections are related to the 
miscalculation of the B-field, an irrelevancy in the electrostatic limit. 

8. ALTERNATE ALGORITHMS 

A. The Vector Potentid Moment Method 

Brackbill and Forslund [16, 171 and later Wallace et al. [ 181 (BFW) use vector 
and scalar potentials in their “moment method” solution for the implicit fields. 
Generally, therefore, they solve for all the field components rather than just, say, 
B,. E,. and E, But also they leave the pressure tensor implicit [ 161 or extrapolate 
the current components while retaining implicit dynamical elements of the pressure 



2D IMPLICIT F[ELD ALGORITHM 457 

tensor [17. 181. In each case the currents depend on the fields through a differential 
relation, e.g.. 

tl,E, [E’*‘+E’*‘xR,-t(R;E’*‘fn,l 
+y- (1 +n;, 

:57) 

in 117. 181, rather than algebraically, as with Eq. (7). Here, j: is the accumulated 
component flux following particle extrapolation. Consequently, their fluxes ccnno: 

be expressed solely as local functions of the E-field, nor can they rearrange their 
results to the equivalent of Eqs. (10) or (14). BFW therefore turn to giobal 
iteration [63-651 of the Maxwell-moment equation system. This implies a 
significantly slower. and possibly less robust solution process that is possible with 
vectorized elliptic solvers. 

Fis a second major difference from our approach, the BFW procedure recom- 
mends only that the electrostattc potential, 4”“‘: should be corrected to agree wtth 
the true charge accumulated in cells at the end of the previous cycle. Thns 1s 
equivalent to making only the longitudinal E-field correction, Eq. (44), and must be 
expected to present computations difficulties in steep density gradient regions. 

B. The Dwect Method 

In then- “direct method” approach Langdon and Barnes 1201. and Hewett and 
Langdon (66) extrapolate the particles and accumulate a current 8’. Then a correc- 
tive current dg- due to the effects of motion in the electric and magnetic fields 1s 
constructed. They determine. as a consequence of the extrapolation procedure 
inherent in the direct method [lS, 201, that the toral implicit current for use in 
Ampere’s law is of the form 

in which z and ; are matrices which strongly couple the field components. since 
they include the rotational effects of the B-fields on the particle orbits. This 
approach introduces current dependencies on the spatial derivatives of E through 
the < term, so again solution via simple elliptic solvers is unavailable. 

Combining Eqs. (58) and (4), one obtains 

El’” + 1) = Ehl -4n/‘ar-z E(“‘+ll 

+c~r~x[B~f?l+~i+~.~~ril+~J], r59j 

Langdon and Barnes [20] noted that the dtvergence of Eq. (39) (which is 
equivalent to Eq. (41)) implies predicted densities II, ““+ I) that can differ from the 
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true densities i2Lm -I- ‘1 achieved when the plasma coordinates are advanced. To 
correct this error, they considered making the longitudinal correction of Eq. (44), 
except that instead of adding -V&j(“l) to EC”‘) they would add the equivalent, 
Vi&j’““,‘471 At, to f’. 

In addition, Langdon and Barnes considered an alternate. purely longitudinal 
correction to the adwmced E-field. That is, they suggested the change 

El’” + 1) --) E’t’” + 1) _ V,), 
(601 

which converts Eq. (59) to 

To correct the density errors they then required that $ satisfy 

in lieu of using Eqs. (43) and (44). Hewett and Langdon (66) subsequently reported 
that the earlier longitudinal correction lead to difficulties in steep gradient regions 
and implied corrective currents in the CLKUU~~. Since these difficulties were 
eliminated with the newer Eq. (62) implicit correction, it was recommended. 

Equation (62) can be solved directly for $ by means of elliptic solvers 
[34, 35, 37, 381. But a solution can also be obtained by starting with 

( 1 + x 1’ vlj = -v ,qY’ + v x A, (63) 

since V x /1 is invisible to the divergence operator in Eq. (62). Then, 

vlj= [l +x]-‘.( -v6p”+vx/1). (63~ 

An equation for J is obtained by requiring that V$ is, indeed. irrotationai, i.e., 

ox ([1+x]-‘.( -V6(.P’+Vx/!jj =o. (651 

For explicit magnetic differencing i( = oi, 4t’I with I the identity diagonal matrix. 
Thus, Eq. (64) reduces to Eq. (49). With our alternate global implicit differencing 
the matrix includes a rotation due to the B-field [20. 671 leading to a more com- 
plex, but solvable equation for a single component I = 2(x, J*) el. Once 1 has been 
obtained, Eq. (64) gives V$ for Eq. (60). 

It is, therefore, clear that the direct implicit longitudinal correction is equivalent 
to our A-function correction. Both corrections remove charge separation errors 
under the arbitrary constraint that no B-field changes are directly produced as a by- 
product. This constraint can be avoided by using the Section 5 current corrections 
instead. 
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9. HYBRID MODELING 

Classical hybrid particle simulation models [63-661 treat the ions as particles 
and the electrons as a single fluid, lacking all or part [7Q] of its inertia. These 
models determine the electron density from the ion data through the quasi-neutra.1 
assumption. 11, 2 ZIP,, or the related Gauss’s law 

so no detailed treatment of the electron dynamics is demanded, except, perhaps, for 
a concomitant update of an electron energy equation. The classical hybrid schemes 
have run into difficulties in the modeling of plasmas with neighboring vacuum 
regions [71], since their implementation relies on the field expressions (when 
resistivity rs low) 

E= - 
V,XB 1 
---VP, 

c en‘, 

with 

zn,v, cv x I3 
v. =---- 

47ren, ’ II, 
(67b) 

which are singular as tj, --f 0. The invocation of an ‘-ad hoc” density floor can suffice 
in one dimension to allow good calculations for the plasma body, but in the low 
density surroundings and for two-dimensional piasmas in vacua the results are 
unreliabie. 

The single electron fluid in the classical hybrid models corresponds best to thz 
LULY~~~~I-J* fluid in our implicit hybrid scheme, since tt is used chiefly to compute the 
fields. Thus, Eq. (67a) goes over to Eq. (20) of our implicit scheme. In conjunction 
with the auxiliary fluid equation of the moment method, we retain the full Maxwell 
displacement term, so a “1” appears in concert with ru$ A? {in place of nc) in the 
denominator of Eq. (20), and the singularity is removed. Also, the full set of elec- 
tron inertial terms is retained. Moreover, instead of determining the velocities 
inferentially, as with Eq. (67b), we update them directly with the aid of either 
Eq. (7 j or (19). Our velocities remain, therefore, finite and well behaved in low den- 
sity regions. 

Our use of an implicit E-field guarantees that the numerical instabilities related 
to plasma waves are suppressed, allowing At $ wPiil, as in the classical hybrid 
models. However, the simple differencing used for the inertial terms in the auxiliary 
equations of the moment method in rzo way guarantees positirity of the densities 
predicted along with the field solution. For this reason we have chosen to retain the 
additional true electron fluid, differenced in a spatially stable manner-according to 
donor-celi or Van Leer-to ensure positivity and long term stability. Alternatively, 
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one might attempt to include diffusive spatial differencing directly in the auxiliary 
equations, as recently suggested in a direct method, FCT framework by 
Denavit [14]. This would lead to iteration of the resultant auxiliary-direct 
equations for more precise fields, in lieu of the iterative corrections described in the 
Appendix. ., 

Our present use of an explicit scalar pressure in both the auxiliary and true fluids 
acts to limit our hybrid time step to an electron Courant value, rather than to the 
ion Courant value enjoyed by the classical hybrid models. We speculate that the use 
of an implicit scalar pressure in both fluids should permit an increase of the implicit 
time step up to a value based on the electron drift speed, rather than one based on 
its thermal speed. For those instances when the electrons track the ions, this should 
result in a substantial permitted increase in At, to values equivalent to the classical 
hybrid limit. Accordingly, motion of the true fluid can be calculated by established 
implicit hydrodynamic techniques [72]--with the electrons updated in implicit 
fields calculated approximately with implicit pressures but simple spatial differen- 
cing. This is philosophically different than reaching for an increased time step by 
way of extrapolation [ 17, 201, since extrapolation essentially moves material in 
consistency with the olrl pressure gradients, while the use of implicit scalar pressures 
moves matter in anticipation of the advanced gradients. Significant motion of the 
electron fluid through E-fields that can seriously change its dynamics is, therefore, 
controlled self-consistently in the proposed approach-but not so with 
extrapolation. The field equations will be more difficult to solve with implicit 
pressures, but an iteration of the Section 3 procedures, using Pj.‘“+ ” 2 nJ,“‘-+ ‘kT’,“” 
and Eq. (66) may prove to be workable and suflicient in two dimensions, as it has 
in more limited one-dimensional investigations [3]. Note that if the true fluid were 
represented as particles (in such a large -4t full-particle scheme) the corresponding 
procedure would demand subcycling of the particles along their orbits [73, 74, 31 
to assure an adequate sampling of the self-consistent fields. 

10. DEMONSTRATIVE CALCULATIONS 

Here we present results from a set of laser illumination runs, performed with 
ANTHEM for the purpose of demonstrating the relative merits of explicit magnetic 
differencing compared to globally implicit Y x B differencing and the comparative 
virtues of the various field correction procedures discussed. Related demonstration 
runs in which classical collisions are active are available in Ref. [26]. 

Our test runs were performed with the default parameters described in Sections 3 
and 4, except as otherwise indicated. Thus, the E-field is fully forward differenced, 
and v(*) x B(‘“’ is centered implicitly in the velocity and current updates. However, 
in the elliptic equations for B= we allow the magnetic force term to be explicit for 
most of these tests. The runs are all very short, typically requiring 65 cycles perfor- 
med in 2 min of CRAY-XMP time. Energy is conserved to better than 5 O/o in the 
course of these runs; conservation will improve when time centering of the implicit 
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terms in the code is more complete, as suggested in Section 3a. In each case the field 
is computed without iteration; there is a single advance of each fluid and/or particle 
component each time step. 

Figures _ 3 to 7 show results for the CO, 10.6 iurn illumination of fully ionized 
(Z = 2.6 j slabs of CH, plastic. The light enters from thZ right and runs parallel to 
the s axis along the grid lines until it reaches the critical surface at 1Ol9 cm-’ elec- 
tron density. We deposit 27% of an applied intensity of 3 x 10’” W,/cm” in the cell 
just below critical by assumed resonance absorption. The spot is 80 pm in diameter 
and at the center of a 1000 pm slab. The background electron and ion temperatures 
are initially set at 100 eV. The laser generated hot electrons are initially emitted at 
20 keV, but hydrodynamic expansion of the hot electron fluid rapidly cools these 
electrons to 10 keV temperatures. We use a 50 by 50 mesh with Au = AJ~ = 20 pm. 
The time step is variable, but typically Ar = 0.12 ps. At the critical density the 
plasma frequency uP = 1.8 x 10”s-’ and therefore of At’= 431. The slab is 
Initialized with an exponential-ramp density profile dropping from 1.3 x 10z3 cm ’ 
electron density down to of 10” cmP3, which is taken as the floor density II.,,. 
Fluid velocities are set to zero in regions for which ?I < II,,,. Generally, we show the 
calculated plasma configuration after 5.4 ps of plasma evolution, representing 5e 
cycles of computation and about 2 min of CRAY-XMP time. 

Figure 2 gives results obtained with explicit magnetic differencing and tise of the 
true current correction. Frame (a) displays two-dimensional hot electron density 
contours which can be calibrated by reference to the one-dimensional density 
profiles given below in frame (d). These profiles are recorded along a iine at 
I’= 500 ,um. The single fiducial line in frames (a) and (b) represents the calculated 
heposition point for las..l- energy. The double fiducials mark the end of the slab at 
fi \liC’ Clearly, hot electrons have propagated more thar, 300pm during rhe 
illumination period. 

Frame (b) shows the self-consistent B-field generated by thermo-electric influen- 
ces [39, 40, 751. Frame (ej taken at the ~3 = 400 /lrn position indicates a near 
maximum field of 250 kG. Frames (c) and (f) give the electrostatic potential 4 in 
contours and profile. There is a small dip in 4 in the vacuum, and 4 goes to a 
maximum of about 20 keV (the initial hot electron temperature) near critical. The 
additional curbe in frame (f) is the containing electric field E, in relative units. 
Clearly, the field acts to hold the hot electrons into quasi-neutral agreement with 
the ions. 

Figure 3 gives results achieved when the same system is modeled with the more 
complex globally implicit v x B differencing. The results are identical in major 
respects to those of Fig. 2. Minor differences to be noted are slightly broader B-field 
contours for from the spot, and slight modifications of 4 in the vacuum and at the 
outer reaches of the B-field contours. From the essenl.ial similarities, we conclude 
that the simpler explicit magnetic differencing is, in fact, an acceptable procedure. 

Figure 4 recalculates the Fig. 2 system with explicit magnetic differencmg but ~0 
longitudinal field correction. The chief deviation from the preceding results is the 
!‘eakagc of hot electrons out ahead of the ions into the initial vacuum region. 
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FIG. 2. A test of the utility of exphcit magnetic differencmg and the true current corrections. Results 
are for a plastic slab at 5.4 ps under steady dlumination by 3 x IO” W.‘cm’ of 10.6 /cm hght. Detads are 

dwussed frame-by-frame m the Sectlon 10 text. 

Inspection also shows that the E-field is weaker near the void and further displaced 
into the void, consistent with the charge separation. Also, the B-field contours are 
broader, and the up-down, II-directed drop-off of 0 is more pronounced inside the 
slab. 

Next, Fig. 5 shows the changed results when just the longitudinal field correction, 
Eq. (44) is imposed to halt the charge separation. The hot electron density con- 
tours and profile appear to evolve as earlier, but the B-field and potential are 
markedly different. The B-field is off scale at peak beyond 500 kG, and much more 
broadly distributed in the vacuum. Relatedly, 4 achieves a value beyond ~KT, in 
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Frc;. 3. The same law and target condltmns as for Fig. 2. but wlih global tmpliclt v x B d&rerc:ng 

The slmllarlty m results testifies to the interchangeability of the iao dlfferencmg schemes. 

front of the laser spot. and reverses sign within the slab. When the same calcuiarior? 
is rerun with dx. 4~. and dt all 10 times smaller (so that ~9~ hr reduces to about 2j 
these nonphysical effects disappear, and the results look again like those of Ftg. 2 
with the true current correction. It was this class of difficulties for large time steps 
and steep gradients that drove us to develop the V x ,:I correclion and the alternare 
true current correction. 

Figure 6 provides results obtained by using both the longitudinal correction and 
the i function. Again, our findicgs are essentially similar to the results with the true 
current correction and also with the uncorrected output--except that the charge 
separation error near the vacuum interface is eliminated. Frame (e j shows a B-field 
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FIG. 3. The Fig. 3 run, but with ,710 field correction. Frame (d) shows the hot electrons leakmg mto 
the vacuum-m violation of quasi-neutrahty. 

profile slightly sharper than with the other corrections and potentials closer to the 
uncorrected potentials inside the slab. The greater simplicity in accumulating 
currents with the 2 function might tend to encourage its use, although the current 
correction is more fundamental- in its relation to a convergent iterative process 
for acquiring the exact fields. The Section 8 direct implicit longitudinal correction of 
Langdon, Barnes, and Hewett [20, 661 should yield results similar to those with the 
J function. 

Finally, Fig. 7 presents output obtained when the hot electrons are treated as 
PIC particles, while the background electrons and ions remain fluids. All but fames 
(d) and (g) are for t = 5.8 ps. These and frame (a) show the time development of the 
hot electron density profiles as well as the positions of the hot electron PIC par- 
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FIG, 5. NonphysIcal results for the B-field and q5 are obtained when just the longitudinal correction :s 
apphcd to the E”“‘-field. B-field excessi\elp fills the vacuum, and CJ rises to many CT,. Here, C$ A:’ > -i50 

at crlrlcal, so the Imphclt character of the calculation is strong. The errors vamsh for smaller systems. 
and Jr such that wP 4r < 2. 

titles. Ten particles are emitted each cycle. so 5000 are present at the end of the run 
and in frame (a). The particles are produced in a right-drifting maxwellian dis- 
tribution in a 30’ cone about the direction towards the depositing laser. Thus. upon 
reflection off the sheath neighboring the vacuum, the electrons enter the slab in a 
more focussed beam than seen in the fluid simulations. The resultant B-field of 
frames (b) and (e) shows broader contours in the s direction and a weaker intensity 
at J* = 400 ilrn. The 4 contours are much more irregular, as a consequence of the 
particle statistics, and the maximum potential is nearly three times the fluidic xralue, 
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FIG 6. Results obtained using both the longitudinal, 0 61. correction and the V xi correctlon. 
Agreement with the true current correction results of Fig. 2 IS good. 

since the E-field must be large enough to reflect electrons from the distribution tail 
at energies exceeding XT,. Frame (h) gives a zl-.X phase plot showing particles 
reflected off the sheath. Here, the solid curve is the mean hot electron velocity. Elec- 
trons are specularly reflected off the left boundary. Last, frame (i) shows a 
smoothed profile of the hot electron density, along with the cold n, and ion n, den- 
sity profiles. The essential point here is that the explicit magnetic differencing and 
true current corrections are proven effective in hybrid particle simulation. 
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Il. CONCLUSIONS 

We have described a robust and simple two-dimensional algorithm, in part 
embodied in the ANTHEM code, for the implicit simulation of plasmas. It com- 
pares favorably with earlier approaches in terms of facility, efficiency, and 
applicability to problems manifesting steep density gradients. The implicit field 
approach can be used with either the particle or fluid modeling of the plasma com- 
ponents, so that widespread full-particle and hybrid applications should be possible. 

APPENDIX A: i3jLm + I) ITERATIONS 

This development expands on the convergence analysis of Ref. [3, Sec- 
tion II.B.41, which, in turn, was derived from the related treatment by Langdon et 
a/. [15]. Due to differences between the true and predicted currents, one will 
generally find that, indeed, following the plasma advance 

That is, equality will prevail using the predicted currents (as required by the Eq. (4) 
solution), but not using the true currents. Consequently, we seek to iterate the 
entire system of fields and plasma, such that in the next (s + 1) iterate, equality with 
the true currents is more closely achieved. We, therefore, seek to establish 

To make this improvement, we define iterative variations 

(3 + 1 ‘QE’“‘+ 1) = ,A + 1 ‘E’“‘+ I, _ b)E(“l + 1 ) - (A3a) 

,~+I)~Bl~+I~=,.,+1,B,“‘+~,-(‘,B,”’+~, 
, 

IAt ll~~(~~+l)~~\+l~‘~n7+I) -IAJ’(m+l, 
AJ’J, - J, J, 

and 

~J+l,~-rmz+l,=Is tI~-(,n+i)~r\l-(/?1+lI 
JJ, - J, J, . 

Then, from Eqs. (19) for iteration level-(s + 1) we derive 

Wd) 

under the condition that the pressures and v x B terms are evaluated at time level- 
(m). From the summation of these component equations we construct 
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The approximate equal signs remind us that variations of the true fluxes are only 
approximately give by the variations of the predicted fluxes, as determined fro-m the 
moment equations. 

These expressions permit us to convert Eq. (A2 j to 

Here, ‘“‘R is the error residual at iteration level-(s), hi, ls)‘-(,,l+~))=~~l-(nr+i~~Isl’~/,rTl’ 
- J, 9, 

represents the difference between true fluxes and the predicted fluxes, and 
4n z 4, “‘jy+ ‘I is given by E.q. (52). Equation (A5) can be solved for the E-field 
variations, yielding 

Faraday’s law, Eq. ( 2 ), relates the B- and E-field variations, givlcg 
G’B= --c At V x PE. We use this to eliminate 9E after taking the curl of Eq. (A61. 
Then. to determine the “+ “9 B!“’ + ” variations corresponding to the latest 
“‘Sjt” + ’ ’ values. we solve 

with 

(A%) 

As earlier. the A; factors in Eq. (A7a ) are computed from Eq. (22~) and based on 
the wall averaged densities ~7, and II!. 

The solution for (’ + “9B”” + ‘) is, again, readily supplied by our IfCG 
solver [34. 35). With this obtained, Eq. (A6) renders (.i+L%?~f”l+c’. We can. 
therefore. proceed to construct 

iJ+l,El”‘+~,=~,)El”‘+~) 
+ 

and 

b+ “Bl tT1 + 1) = (3)B(‘N + 1, + ,’ + 1 QB”” + ! 1, 
(P&b i 

Finally, we advance the plasma coordinates in these new fields from their time 
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level-(m) determinations to improved time level-(nz + 1) values, (’ +“x)~+ I) and 
(Sf l~ujm+ 1) while accumulating ” + ’ ‘PZ:~ + lJ and Is+ ‘)jkm + “-to complete the 
iterative cycle. This overall procedure can, of course, be repeated in pursuit of still 
greater improvement. 

Comparing Eqs. (53) to Eq. (A6), we observe that with the true current correc- 
tion procedure we essentially defer calculation of the effects of the current 
deviations until the next cycle. By skipping the iterative sequence, we avoid costly 
ICCG solutions for “+“92B1_” +I) and multiple updates of the plasma coordinates 
each time step. Simulation results with this simplification have, in practice, proven 
acceptable. 

Similarly, comparing Eqs. (49) and (A7b) we see that the J-function correction, 
indeed, corresponds to very special transverse current deviations, such that no 
B-field variations are induced. 

To check the convergence of these iterations we can examine the ratio of 
successive residuals. From Eqs. (A5b) and (52) one can determine that 

This can be rearranged to 

by using Eq. (A5c) for “‘R, and the differential of Eq. (52) to express 
47c c (r+')~J?jr+ 1) At in terms of (A+ Ij&El”f 11 and IA+ l)QBf”‘fl), and by using the 

differential of Faraday’s law to eliminate ~B”“+‘) from ‘“‘R. 
Then for fields with a sample spatial dependence of efkr the denominator of 

Eq. (AIO) is (1 + ai, At’+ k2c2 At”) gE”“+“. Clearly, the next residual, (‘+“R, is 
zero, if, in fact, equality applies in Eq. (A4b). Also, convergence is faster for shorter 
wavelength (larger k) disturbances. That is, if the true current’s dependence on PE 
is the same as the dependence of the auxiliary fluid current, then the iterative 
corrections will give the exact field and plasma solution after a single pass (at level 
s = 1). Generally, this will not be the case. For example, while the auxiliary fluids 
will obey Eq. (49a), the x component of any true hybrid fluid elements is given by 
Eqs. (36a) and (36b). Only in the pure second-order case (ye = 0)-with negligible 
Lagrangian phase density changes-are the densities contributing to the true and 
auxiliary currents the same. Similarly, any particles crossing a cell-wall boundary, 
and contributing to the currents there, will experience the E-field from the four 
nearest cell-wall centers, while (for B=O) the auxiliary fluid currents sense only a 
local cell-wall centered field. Complexities of the field-to-particle area weighting and 
the particle-to-current accumulation procedures go further to guarantee some 
inequality in Eq. (A4b). Reference [3] discusses such details in a one-dimensional 
context. Borrowing from these one-dimensional results, we can conclude that in 
spatially near-uniform systems convergence will be faster, since the relatively larger 
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stencil for the particle-felt fields and Van Leer hydrodynamics will matter Iess. 
Again, experience has shown that simple deferral of a single iterative correction to 
the next cycle-the true current procedure-is sufficient for acceptable simulation 
results. 
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